Skip to main content

Advertisement

Log in

120 GHz on-chip multi-mode wideband dielectric resonator antennas for THz applications

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

This work discusses the design methods of 120 GHz on-chip dual-mode and three-mode dielectric resonator antennas (DRAs) based on a standard CMOS technology. The bandwidths of the DRAs are expanded by merging adjacent modes with similar radiation patterns. The impedance bandwidth of 18.6% with the peak gain of 6 dBi is achieved for the proposed on-chip dual-mode DRA. In addition, the impedance bandwidth of 20.1% with the peak gain of 6.9 dBi is achieved for the proposed three-mode DRA. To the best of authors’ knowledge, the on-chip multi-mode DRAs are first proposed. The impedance bandwidth of the proposed three-mode on-chip DRA is wider than the other on-chip DRAs using planar feeding with on-chip ground. The proposed antennas are promising for terahertz applications due to the merits of wide band, high gain and high radiation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel P H, IEEE Transactions on Microwave Theory and Techniques 50, 910 (2002).

    Article  ADS  Google Scholar 

  2. Uzunkol M, Gurbuz O D, Golcuk F and Rebeiz G M, IEEE J. Solid-State Circuits 48, 2056 (2013).

    Article  ADS  Google Scholar 

  3. Ng H J and Kissinger D, IEEE Transactions on Microwave Theory and Techniques 66, 2592 (2018).

    Article  ADS  Google Scholar 

  4. Babakhani A, Guan X, Komijani A, Natarajan A and Hajimiri A, IEEE Journal of Solid-State Circuits 41, 2795 (2007).

    Article  ADS  Google Scholar 

  5. Pan S, Caster F, Heydari P and Capolino F, IEEE Transactions on Antennas and Propagation 62, 4439 (2014).

    Article  ADS  Google Scholar 

  6. Ojefors E, Sonmez E, Chartier S, Lindberg L, Schick C, Rydberg A and Schumacher H, IEEE Transactions on Microwave Theory and Techniques 55, 1467 (2007).

    Article  ADS  Google Scholar 

  7. Jamali B and Babakhani A, IEEE Transactions on Microwave Theory and Techniques 66, 2313 (2018).

    Article  ADS  Google Scholar 

  8. Ng H J, Kucharski M, Ahmad W and Kissinger D, IEEE Journal of Solid-State Circuits 52, 2242 (2017).

    Article  ADS  Google Scholar 

  9. Muhammad S K, Farooq A T, Azat M, Atif S and Hammad M C, IEEE Antenna and Wireless Propagation Letters 18, 1046 (2019).

    Article  Google Scholar 

  10. Zhu H, Li X P, Feng W W, Xiao J and Zhang J H, IET Microwaves, Antennas & Propagation 12, 727 (2018).

    Article  Google Scholar 

  11. Deng X D, Li Y, Wu W and Xiong Y Z, IEEE Transactions on Antennas and Propagation 63, 5272 (2015).

    Article  ADS  Google Scholar 

  12. Xie H, Belostotski L and Okoniewski M, Microwave and Optical Technology Letters 58, 347 (2016).

    Article  Google Scholar 

  13. Nezhad-Ahmadi M R, Fakharzadeh M, Biglarbegian B and Safavi-Naeini S, IEEE Transactions on Antennas and Propagation 58, 3388 (2010).

    Article  ADS  Google Scholar 

  14. Hou D B, Xiong Y Z, Goh W L, Hu S M, Hong W and Madihian M, IEEE Transactions on Antennas & Propagation 60, 4102 (2012).

    Article  ADS  Google Scholar 

  15. Hou D B, Hong W, Goh W L, Chen J X, Xiong Y Z, Hu S M and Madihian M, IEEE Antennas and Propagation Magazine 56, 80 (2014).

    Article  ADS  Google Scholar 

  16. Hitzler M, Saulig S, Boehm L, Mayer W, Winkler W, Uddin N and Waldschmidt C, IEEE Transactions on Microwave Theory and Techniques 65, 1682 (2017).

    Article  ADS  Google Scholar 

  17. Li C H and Chiu T Y, IEEE Transactions on Tera-hertzScience and Technology 7, 284 (2017).

    Article  ADS  Google Scholar 

  18. Li C H and Chiu T Y, IEEE Access 7, 7737 (2019).

    Article  Google Scholar 

  19. Fang X S and Leung K W, IEEE Transactions on Antennas and Propagation 59, 2409 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-long Teng  (腾云龙).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61701339).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Yl. 120 GHz on-chip multi-mode wideband dielectric resonator antennas for THz applications. Optoelectron. Lett. 16, 166–170 (2020). https://doi.org/10.1007/s11801-020-9081-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-020-9081-6

Document code

Navigation