Skip to main content
Log in

Sub-micrometer-thick and low-loss Ge20Sb15Se65 rib waveguides for nonlinear optical devices

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We report the fabrication and optical properties of sub-micrometer-thick Ge20Sb15Se65 chalcogenide rib waveguides. The radio-frequency (RF) magnetron sputtering method is used to deposit 0.83 μm-thick films. A protective layer of SU-8 is employed to prevent the attack of the alkaline developer, and CHF3 is used as the etching plasma for reactive ion etching (RIE). Finally, the resulted rib waveguides with smooth sidewalls and vertical pattern profiles are rendered. The propagation losses for 4 μm-wide waveguides are measured to be 0.7 dB/cm for transverse electric (TE) modes and 0.68 dB/cm for transverse magnetic (TM) modes at 1 550 nm via the cutback method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xin Gai, Ting Han, Amrita Prasad, Steve Madden, Duk-Yong Choi, Rongping Wang, Douglas Bulla and Barry Luther-Davies, Optics Express 18, 26635 (2010).

    Article  ADS  Google Scholar 

  2. XU Hui-juan, NIE Qiu-hua, WANG Xun-si, HE Yu-ju, WANG Guo-xiang, DAI Shi-xun, XU Tie-feng, ZHANG Pei-quan, ZHANG Xiang-hua and Bruno Bureau, Journal of Optoelectronics·Laser 24, 93 (2013). (in Chinese)

    Google Scholar 

  3. HE Yu-ju, WANG Xun-si, NIE Qiu-hua, ZHANG Pei-quan, XU Hui-juan, XU Tie-feng, DAI Shi-xun and ZHANG Pei-qing, Journal of Optoelectronics·Laser 24, 530 (2013). (in Chinese)

    Google Scholar 

  4. Xu Hui-juan, Wang Xun-si, Nie Qiu-hua, Zhu Min-ming, Jiang Chen, Liao Fang-xing, Zhang Pei-quan, Zhang Pei-qing, Dai Shi-xun, Xu Tie-feng and Tao Guang-ming, Journal of Optoelectronics·Laser 25, 1109 (2014). (in Chinese)

    Google Scholar 

  5. Benjamin J. Eggleton, Barry Luther-Davies and Kathleen Richardson, Nature Photonics 5, 141 (2011).

    ADS  Google Scholar 

  6. Eggleton B. J., Vo T. D., Pant R., Schröder J., Pelusi M. D., Choi D. Y., Madden S. J. and Luther-Davies B., Laser & Photonics Reviews 6, 97 (2012).

    Article  Google Scholar 

  7. Zhang X. H., Guimond Y. and Bellec Y., Journal of Non-Crystalline Solids 326, 519 (2003).

    Article  ADS  Google Scholar 

  8. Lenz G., Zimmermann J., Katsufuji T., Lines M. E., Hwang H. Y., Spälter S., Slusher R. E., Cheong S. W., Sanghera J. S. and Aggarwal I. D., Optics Letters 25, 254 (2000).

    Article  ADS  Google Scholar 

  9. Ureña A., Piarristeguy A., Fontana M., Vigreux-Bercovici C., Pradel A. and Arcondo B., Journal of Physics and Chemistry of Solids 68, 993 (2007).

    Article  ADS  Google Scholar 

  10. Nazabal V., Charpentier F., Adam J. L., Nemec P., Lhermite H., Brandily-Anne M. L., Charrier J., Guin J. P. and Moréac A., International Journal of Applied Ceramic Technology 8, 990 (2011).

    Article  Google Scholar 

  11. Wei W. H., Wang R. P., Shen X., Fang L. and Luther-Davies B., The Journal of Physical Chemistry C 117, 16571 (2013).

    Article  Google Scholar 

  12. Charrier J., Brandily M. L., Lhermite H., Michel K., Bureau B., Verger F. and Nazabal V., Sensors & Actuators B: Chem 173, 468 (2012).

    Article  Google Scholar 

  13. Schmidt M. A., Lei D. Y., Wondraczek L., Nazabal V. and Maier S. A., Nature Communications 3, 1108 (2012).

    Article  ADS  Google Scholar 

  14. Zhang W., Dai S., Shen X., Chen Y., Zhao S., Lin C., Zhang L. and Bai J., Materials Letters 98, 42 (2013).

    Article  Google Scholar 

  15. Choi D. Y., Madden S. J., Bulla D. A., Rode A., Wang R. and Luther-Davies B., Physica Status Solidi C 8, 3183 (2011).

    Article  ADS  Google Scholar 

  16. Choi D. Y., Madden S. J., Rode A., Wang R. and Luther-Davies B., Journal of Applied Physics 104, 113305 (2008).

    Article  ADS  Google Scholar 

  17. Choi D. Y., Madden S. J., Bulla D. A., Wang R., Rode A. and Luther-Davies B., Journal of Applied Physics 107, 053106 (2010).

    Article  ADS  Google Scholar 

  18. Tien P. K., Applied Optics 10, 2395 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li  (李军).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61377061), the Public Project of Zhejiang Province (No.2014C31146), the Young Leaders of the Academic Climbing Project of the Education Department of Zhejiang Province (No.pd2013092), the Natural Science Foundation of Ningbo City (No.2014A610124), the Open Research Fund of the Most Important Specialty “Information and Communication Engineering” of Zhejiang Province (No.XKXL1321), and the Magna Fund sponsored by K. C. Wong in Ningbo University of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, F., Shen, X. et al. Sub-micrometer-thick and low-loss Ge20Sb15Se65 rib waveguides for nonlinear optical devices. Optoelectron. Lett. 11, 203–206 (2015). https://doi.org/10.1007/s11801-015-4231-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-015-4231-y

Keywords

Navigation