Skip to main content
Log in

Design and implementation of differential mid-infrared carbon monoxide detector

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Based on wide-band infrared (IR) light source and dual-channel pyroelectric detector with detection channel of 4.66 μm and reference channel of 3.95 μm, a differential mid-infrared (MIR) carbon monoxide (CO) detector is designed and implemented. In order to reduce the detection limit and improve the detection sensitivity, an open spherical mirror chamber is designed and fabricated according to the divergence angle of the light source. The CO detection system is established using the welded and debugged detection circuits, a series of CO gases with different concentrations are prepared, and gas concentration calibration experiment is carried out. Experimental results indicate that after the amplifying circuit, the signal-to-noise ratios (SNRs) of the two channels are 17.58 dB and 18.46 dB, respectively, and the detection error of this system is less than 9% in 0%–4% measuring range. The detection sensitivity in the low concentration range is approximately 0.05%. 6 h measurement on the 0 ppm sample gas shows that the fluctuation range is about ±0.02%, and the measurement standard deviation is about 0.89%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Nagai, T. Nakashima, M. Nishibori, T. Itoh, N. Izu and W. Shin, Sensors and Actuators B: Chemical 182, 789 (2013).

    Article  Google Scholar 

  2. Z. R. Zhang, F. Z. Dong, B. Wu, M. L. Tian, T. Pang, G. J. Tu and Z. B. Ni, Journal of Optoelectronics·Laser 22, 1691 (2011). (in Chinese)

    Google Scholar 

  3. S. A Eliza, R. Olah and A. K. Dutta, Nanoscience and Nanotechnology Letters 2, 139 (2010).

    Article  Google Scholar 

  4. L. Li, F. Cao, Y. D. Wang, M. L. Cong, L. Li and Y. P. An, Sensors and Actuators B: Chemical 142, 33 (2009).

    Article  Google Scholar 

  5. R. L. Wang and Y. T. Wang, Infrared Detection Technology, Chemical Industry Press, 2006. (in Chinese)

    Google Scholar 

  6. L. Li, Study on Mid-infrared Quantum Cascade Laser based Detection Instrument for Methane and Carbon Monoxide, Jilin University, 2011. (in Chinese)

    Google Scholar 

  7. W. L. Ye, C. T. Zheng and Y. D. Wang, Journal of Optoelectronics ·Laser 24, 104 (2013). (in Chinese)

    Google Scholar 

  8. Y. Zhang, F. R. Wang, Y. H. Zhao, Y. D. Wang, T. Cui and R.W. Kan, Infrared Physics & Technology 55, 353 (2012).

    Article  ADS  Google Scholar 

  9. Y. J. Zhao, C. Wang, T. Y. Liu, Z. Wang, Y. B. Wei and Y. F. Li, Spectroscopy and Spectral Analysis 30, 2857 (2010). (in Chinese)

    Google Scholar 

  10. N. Gao, Z. H. Du, R. B. Qi, Y. W. Ma, D. Y. Gao, W. L. Chen and Y. Wang, Journal of Optoelectronics·Laser 22, 893 (2011). (in Chinese)

    Google Scholar 

  11. C. Chen, J.M. Dang, J. Q. Huang, Y. Yang and Y. D. Wang, Spectroscopy and Spectral Analysis 32, 3146 (2012). (in Chinese)

    Google Scholar 

  12. D. D. Nelson, B. McManus, S. Urbanski, S. Herndona and M. S. Zahniser, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60, 3325 (2004).

    Article  ADS  Google Scholar 

  13. U. Willer, M. Saraji, A. Khorsandi, P. Geiser and W. Schade, Optics and Lasers in Engineering 44, 699 (2006).

    Article  ADS  Google Scholar 

  14. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel and R. F. Curl, Applied Physics B 90, 165 (2008).

    Article  Google Scholar 

  15. C. T. Zheng, W. L. Ye, G. L. Li, X. Yu, C. X. Zhao, Z. W. Song and Y. D. Wang, Sensors and Actuators B: Chemical 160, 389 (2011).

    Article  Google Scholar 

  16. W. L. Ye, X. Yu, C. T. Zheng, C. X. Zhao, M. L. Cong, Z. W. Song and Y. D. Wang, Optoelectronics Letters 7, 37 (2011).

    Article  ADS  Google Scholar 

  17. Y. B. Wang, Development of Carbon Monoxide Analyzer for Ships, China Ship Research Institute, 2012.

    Google Scholar 

  18. S. G. Zheng, M. Li, J. Zhang, H. D. Zhang and Z. L. Hu, Opt. Precision Eng. 20, 2154 (2012). (in Chinese)

    Article  Google Scholar 

  19. H. Wu, The CO Gas Detective System based on the Wireless Transmission, Nan Chang University, 2012.

    Google Scholar 

  20. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon and L. R. Brown, Journal of Quantitative Spectroscopy and Radiative Transfer 110, 533 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-ding Wang  (王一丁).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61077074), the National Key Technology R&D Program (No.2013BAK06B04), the Science and Technology Department of Jilin Province of China (No.20120707), and the Science and Technology Development of Changchun City of China (No.11GH01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, F., Li, Gl., Song, N. et al. Design and implementation of differential mid-infrared carbon monoxide detector. Optoelectron. Lett. 9, 385–388 (2013). https://doi.org/10.1007/s11801-013-3108-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-013-3108-1

Keywords

Navigation