Skip to main content
Log in

Controlled teleportation of an unknown 3D two-particle state via 3D partially entangled states

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A scheme is presented to realize the controlled teleportation of an unknown three dimensional (3D) two-particle state by using a non-maximally entangled two-particle state and a non-maximally entangled three-particle state in the 3D space as the quantum channels, and one of the particles in the channels is used as the controlled particle. Analysis shows that when the quantum channels are of maximal entanglement, namely the channels are composed of a 3D Bell state and a 3D GHZ state, the total success probability of the controlled teleportation can reach 1. And this scheme can be expanded to control the teleportation of an unknown D-dimensional two-particle state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K, Phys. Rev. Lett. 70, 1895 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A, Nature 390, 575 (1997).

    Article  ADS  Google Scholar 

  3. Furusawa A, SArensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S, Science 282, 706 (1998).

    Article  ADS  Google Scholar 

  4. Kim Y H, Kulik S P and Shih Y, Phys. Rev. Lett. 86, 1370 (2001).

    Article  ADS  Google Scholar 

  5. Kraus B, Hammerer K, Giedke G and Cirac J I, Phys. Rev. A 67, 042314 (2003).

    Article  ADS  Google Scholar 

  6. Zhang T C, Goh K W, Chou C W, Lodahl P and Kimble H J, Phys. Rev. A 67, 03380 (2003).

    Google Scholar 

  7. Nielsen M A, Knill E and Lafkamme R, Nature 396, 52 (1998).

    Article  ADS  Google Scholar 

  8. Konner M, Nature 429, 705 (2004).

    Article  ADS  Google Scholar 

  9. Li J, Chen Y R, Xin Y, Zhou M C and Xu S X, Optics Commun. 283, 3105 (2010).

    Article  ADS  Google Scholar 

  10. Li J, Chen Y R and Xu S X, Optoelectron. Lett. 7, 77 (2011).

    Article  ADS  Google Scholar 

  11. Dai H Y, Kuang L M and Li C Z, Phys. Lett. A 323, 360 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cao H J and Song H S, Phys. Scri. 75, 747 (2007).

    Article  MATH  Google Scholar 

  13. Wang J, Wan X, Zhang H F, Gao Y, Chen T Y and Liang H, Optoelectron. Lett. 5, 380 (2009).

    Article  ADS  Google Scholar 

  14. Yeo Y and Chua W K, Phys. Rev. Lett. 96, 060502 (2006).

    Article  ADS  Google Scholar 

  15. Lee J and Kim M S, Phys. Rev. Lett. 84, 4236 (2000).

    Article  ADS  Google Scholar 

  16. Joo J, Park Y J, Oh S and Kim J, New. J. Phys. 5, 136 (2003).

    Article  ADS  Google Scholar 

  17. Liu J M, Zhang Y S and Guo G C, Chin. Phys. 12, 251 (2003).

    Article  ADS  Google Scholar 

  18. Liu H, Xiao X Q and Liu J M, Commun. Theor. Phys. 50, 69 (2008).

    Article  ADS  Google Scholar 

  19. Liu J M and Guo G C, Chin. Phys. Lett. 19, 456 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  20. Yang C P and Guo G C, Chin. Phys. Lett. 16, 628 (1999).

    Article  ADS  Google Scholar 

  21. Zheng Y Z, Gu Y J and Guo G C, Chin. Phys. 11, 537 (2002).

    Article  ADS  Google Scholar 

  22. Cabello A, Phys. Rev. Lett. 89, 100402 (2003).

    Article  MathSciNet  Google Scholar 

  23. Li J, Chen Y R, Zhao Q and Zhou M C, Journal of Optical Society of America A 26, 2121 (2009).

    Article  ADS  Google Scholar 

  24. Yuan H C and Qi K G, Chin. Phys. 14, 898 (2005).

    Article  ADS  Google Scholar 

  25. Shi B S and Tomita A, Phys. Lett. A 296, 161 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Joo J and Park Y J, Phys. Lett. A 300, 324 (2002).

    Article  ADS  Google Scholar 

  27. Kitaev A Y, Russlan Mathematical Surveys 52, 1191 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Braunstein S L, Phys. Rev. Lett. 80, 4084 (1998).

    Article  ADS  Google Scholar 

  29. Beny C, Kempf A and Kribs D W, Phys. Rev. A 76, 042303 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-sheng Wang  (王蔚生).

Additional information

This work has been supported by the National High Technology Research and Development Program of China (Nos.2007AA030112 and 2009AA032708).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Wang, Ws. Controlled teleportation of an unknown 3D two-particle state via 3D partially entangled states. Optoelectron. Lett. 7, 304–307 (2011). https://doi.org/10.1007/s11801-011-1017-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-011-1017-8

Keywords

Navigation