Skip to main content
Log in

Logic Diagrams, Sacred Geometry and Neural Networks

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

In early modernity, one can find many spatial logic diagrams whose geometric forms share a family resemblance with religious art and symbols. The family resemblance these diagrams bear in form is often based on a vesica piscis or on a cross: Both logic diagrams and spiritual symbols focus on the intersection or conjunction of two or more entities, e.g. subject and predicate, on the one hand, or god and man, on the other. This paper deals with the development and function of logic diagrams, their analogy to religious art and symbols, and their modern application in artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. For a bitstring semantic in connection to logic diagrams cf. [8] and [45].

References

  1. Abraham, T.: From theory to data: representing neurons in the 1940s. Biol. Philos. 18, 415–426 (2003)

    Article  Google Scholar 

  2. Alsina, C., Nelsen, R.B.: Venn diagrams. In: Icons of Mathematics: An Exploration of Twenty Key Images, pp. 12–20. Mathematical Association of America, Washington, DC (2011)

  3. Anellis, I.H.: Peirce’s truth-functional analysis and the origin of the truth table. Hist. Philos. Log. 33, 87–97 (2012)

    Article  MathSciNet  Google Scholar 

  4. Boole, G.: An Investigation of the Laws of Thought: on Which are Founded the Mathematical Theories of Logic and Probabilities. Walton and Maberly, London (1854)

    MATH  Google Scholar 

  5. Calter, P.: Sun disk, moon disk. In: Gorini, C.A. (ed.) Geometry at Work: Papers in Applied Geometry. Mathematical Association of America, Washington, DC (2000)

    Google Scholar 

  6. Clark, G.: New light on Peirce’s iconic notation for the sixteen binary connectives. In: Houser, N., Roberts, D.D., Evra, J.V. (eds.) Studies in the Logic of Charles Sanders Peirce, pp. 304–333. Indiana University Press, Bloomington (1997)

    Google Scholar 

  7. Clarkson, E.: Essay on the symbolic evidences of the temple church. In: Billings, R.W. (ed.) Architectural Illustrations and Account of the Temple Church. Thomas and William Boone, London (1838)

    Google Scholar 

  8. Demey, L., Smessaert, H.: Combinatorial bitstring semantics for arbitrary logical fragments. J. Philos. Log. 47, 325–363 (2018)

    Article  MathSciNet  Google Scholar 

  9. Dumit, J.: Plastic diagrams: circuits in the brain and how they got there. In: Bates, D.W., Bassiri, N. (eds.) Plasticity and Pathology: On the Formation of the Neural Subject, pp. 219–268. Fordham University Press, New York (2016)

    Google Scholar 

  10. Edwards, A.W.F.: Cogwheels of the Mind: the Story of Venn Diagrams. John Hopkins University Press, Baltimore, London (2004)

    MATH  Google Scholar 

  11. Euler, L.: Letters of Euler on different subjects in physics and philosophy. In: Addressed to a German Princess. Vol. I, transl. and ed. by H. Hunter, 2nd ed. Murray and Highley, London (1802)

  12. Foerster, H.V.: Computation in neuronal nets. In: Understanding Understanding: Essays on Cybernetics and Cognition, pp. 21–100. Springer, New York (2003)

  13. French, K.L.: Gateway to the Heavens: How Geometric Shapes, Patterns and Symbols form our Reality. Watkins, London, New York (2014)

    Google Scholar 

  14. Gardner, M.: Logic Machines and Diagrams, 2nd edn. Harvester, Brighton (1983)

    MATH  Google Scholar 

  15. Grattan-Guiness, I.: Routes of Learning: Highways, Pathways, and Byways in the History of Mathematics. Johns Hopkins University Press, Baltimore (2009)

    MATH  Google Scholar 

  16. Greaves, M.: The Philosophical Status of Diagrams. CSLI Publications, Stanford (2002)

    MATH  Google Scholar 

  17. Großer, S.: Gründliche Anweisung zur Logica. Johann Wilisch, Budißin, Görlitz (1697)

  18. Krause, K.C.F.: Die Lehre vom Erkennen und von der Erkenntniss, als erste Einleitung in die Wissenschaft: Vorlesungen für Gebildete aus allen Ständen, ed by H.K.v. Leonhardi, Dietrich’sche Buchhandlung, Göttingen (1836)

  19. Kreiser, L.: Gottlob Frege: Leben—Werk—, Chap. 3. Meiner, Hamburg (2001)

  20. Lemanski, J.: Periods in the use of Euler-type diagrams. Acta Baltica Historiae et Philosophiae Scientiarum 5, 50–69 (2017)

    Article  Google Scholar 

  21. Lima, M.: The Book of Circles: Visualizing Spheres of Knowledge. Princeton Architectural Press, New York (2017)

    Google Scholar 

  22. Macukow, B.: Neural networks—state of art, brief history, basic models and architecture. In: Saeed, K., Homenda, W. (eds.) Computer Information Systems and Industrial Management. CISIM 2016. Lecture Notes in Computer Science, vol. 9842, pp. 3–14. Springer, S.l. (2016)

    Chapter  Google Scholar 

  23. Marquand, A.: XXXIII: On logical diagrams for n terms. Lond. Edinb. Dublin Philos. Mag. J. Sci. 12, 266–270 (1881)

    Article  Google Scholar 

  24. McCluskey Jr., E.J.: Minimization of Boolean functions. Bell Syst. Tech. J. 35, 1417–1444 (1956)

    Article  MathSciNet  Google Scholar 

  25. McCulloch, W.S.: Machines that Think and Want. In: Halstead, W.C. (ed.) Brain and Behavior: A Symposium, Comparative Psychology Monographs 20:1, pp. 39–50. University of California Press, Berkeley, CA (1950)

    Google Scholar 

  26. McCulloch, W.S.: Three of Von Neumann’s biological questions. In: RLE Quarterly Progress Report, pp. 129–138. Massachusetts Institute of Technology, Cambridge (1957)

  27. McCulloch, W.S.: Stable, reliable, and flexible nets of unreliable formal neurons. In: RLE Quarterly Progress Report, pp. 118–129. Massachusetts Institute of Technology, Cambridge (1958)

  28. McCulloch, W.S.: Agathe tyche of nervous nets—the lucky reckoners. Natl. Phys. Lab. Symp. 10, 613–625 (1959)

    Google Scholar 

  29. McCulloch, W.S.: The reliability of biological systems. In: Yovits, M.C., Cameron, S. (eds.) Self-Organizing Systems: Proceedings of an Interdisciplinary Conference 5 and 6 May, 1959, pp. 264–281. Pergamon Press, Oxford (1960)

  30. McCulloch, W.S.: What is a number, that a man may know it, and a man, that he may know a number? What is a number. Gen. Semant. Bull. 26(27), 7–18 (1960)

    Google Scholar 

  31. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  32. Meegan, W.J.: God’s Ambiance: is Revealed in the Matrix of Wisdom. Outskirts Press, Denver (2016)

    Google Scholar 

  33. Mira, J.M.: Symbols versus connections: 50 years of artificial intelligence. Neurocomputing 71, 671–680 (2008)

    Article  Google Scholar 

  34. Moktefi, A.: Schopenhauer’s Eulerian diagrams. In: Lemanski, J. (ed.) Language. Logic and Mathematics in Schopenhauer. Birkhäuser, Basel (2019)

    Google Scholar 

  35. Moktefi, A., Shin, S.-J.: A history of logic diagrams. In: Gabbay, D.M., Woods, J. (eds.) Logic. A History of its Central Concepts, pp. 611–682. North Holland, Oxford (2012)

    Chapter  Google Scholar 

  36. More, T.: On the construction of Venn diagrams. J. Symb. Log. 24, 303–304 (1959)

    Article  MathSciNet  Google Scholar 

  37. Nakatsu, R.T.: Using Venn diagrams to perform logic reasoning: an algorithm for automating the syllogistic reasoning of categorical statements. Int. J. Intell. Syst. 29, 84–103 (2014)

    Article  Google Scholar 

  38. Oldford, R.W., Cherry, W.H.: Picturing probability: the poverty of Venn diagrams, the richness of eikosograms. Retrieved from University of Waterloo, http://www.math.uwaterloo.ca/~rwoldfor/ (July 2017)

  39. Peirce, C.S.: A proposed logical notation (MS 530). In: Pietarinen, A.-V.J. (eds) Charles S. Peirce: Logic of the Future Peirce’s Writings on Existential Graphs. De Gruyter (forthcoming)

  40. Peirce, C.S.: Collected Papers of Charles Sanders Peirce, vols. 1–6, ed. by C. Hartshorne, P. Weiss, vols. 7–8, ed. by A.W. Burks. Harvard University Press, Cambridge, MA (1931–1935, 1958)

  41. Perkel, D.H.: Logical neurons: the enigmatic legacy of Warren McCulloch. Trends Neurosci. 11, 9–12 (1988)

    Article  Google Scholar 

  42. Quine, W.V.O.: A way to simplify truth functions. Am. Math. Mon. 62, 627–631 (1955)

    Article  MathSciNet  Google Scholar 

  43. Randolph, J.F.: Cross-examining propositional calculus and set operations. Am. Math. Mon. 72, 117–127 (1965)

    Article  MathSciNet  Google Scholar 

  44. Roes, A.: An Iranian standard used as a christian symbol. J. Hell. Stud. 57, 248–251 (1937)

    Article  Google Scholar 

  45. Schang, F.: Abstract logic of oppositions. Log. Log. Philos. 21, 415–438 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Siegel, C.C.F.: Kreuz im Cultus der Christen. In: Handbuch der christlich-kirchlichen Alterthümer in alphabetischer Ordnung, vol. 3, pp. 113–143. Schumann, Leipzig (1837)

  47. Schopenhauer, A.: Philosophische Vorlesungen. In: Deussen, P., Mockrauer, F. (eds.) Sämmtliche Werke, vol. IX. Piper, München (1913)

    Google Scholar 

  48. Swanson, R.: Information Sciences 1965 (AFOSR 66-0130), p. 92 (no. 6–9). Air Force Office of Scientific Research, Washington, DC (1966)

  49. Venn, J.: Symbolic Logic, 2nd edn. Macmillan, London (1881)

    Book  Google Scholar 

  50. Wittgenstein, L.: Tractatus Logico-Philosophicus: With an Introduction by Bertrand Russell. Harcourt, Brace and Company, New York (1922)

    MATH  Google Scholar 

  51. Zellweger, S.: Sign-creation and man-sign engineering. Semiotica 38, 17–54 (1982)

    Article  Google Scholar 

  52. Zellweger, S.: Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In: Houser, N., Roberts, D.D., Van Evra, J. (eds.) Studies in the Logic of Charles Sanders Peirce, pp. 334–386. Indiana University Press, Bloomington (1997)

    Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to the audience of the 2nd World Congress on Logic and Religion in Warsaw 2017, to the journal’s anonymous reviewers for comments that contributed to the improvement of this paper. I would also like to thank Ahti-Veikko Pietarinen, Marcin Trepczynski, Stanislaw Krajewski and Theodor Berwe, who supported me in writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Lemanski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemanski, J. Logic Diagrams, Sacred Geometry and Neural Networks. Log. Univers. 13, 495–513 (2019). https://doi.org/10.1007/s11787-019-00239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-019-00239-9

Keywords

Mathematics Subject Classification

Navigation