Skip to main content
Log in

Characteristic Inference Rules

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

The goal of this paper is to generalize a notion of quasi-characteristic inference rule (by using finite partial algebras instead of finite subdirectly irreducible algebras) in the following way: with every finite partial algebra we associate a (multiple-conclusion) rule, and study the properties of these rules. We prove that any equivalential logic can be axiomatized by such rules. We further discuss the correlations between characteristic rules of the finite partial algebras and canonical rules. Then, with every algebra we associate a set of characteristic rules that correspond to each finite partial subalgebra of this algebra. Finally, we demonstrate that in many respects these sets enjoy the same properties as regular quasi-characteristic rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaschewski B., Nelson E.: On residual finiteness and finite embeddability. Algebra Univers. 2, 361–364 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bezhanishvili G., Bezhanishvili N.: An algebraic approach to canonical formulas: intuitionistic case. Rev. Symb. Log. 2(3), 517–549 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blok, W.J., Jonsson, B.: Algebraic Structures for Logic. A Course Given at the 23rd Holiday Mathematics Symposium, New Mexico State University (1999)

  4. Blok, W.J., Pigozzi, D.: Algebraizable logics. Mem. Am. Math. Soc. 77, 396 (1989) vi + 78

  5. Blok, W.J., van Alten, C.J.: On the finite embeddability property for residuated lattices, pocrims and BCK-algebras. Rep. Math. Logic. 34, 159–165 (2000). Algebra and Substructural Logics (Tatsunokuchi, 1999) (2000)

  6. Blok, W.J., van Alten, C.J.: The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Univers. 48(3), 253–271 (2002)

  7. Brink, C.: A note on Peirce and multiple conclusion logic. In: Transactions of the Charles S. Peirce Society, pp. 349–351. Indiana University Press, Bloomington (1982)

  8. Burmeister, P.: Partial algebras—an introductory survey. In: Algebras and Orders (Montreal, PQ, 1991). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 389, pp. 1–70. Kluwer Academic Publishers, Dordrecht (1993)

  9. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer, New York (1981)

  10. Cabrer, L., Metcalfe, G.: Admissibility via natural dualities. Mathematics Institute of the University of Bern. Research Report 2012-05 (2012)

  11. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. The Clarendon Press Oxford University Press/Oxford Science Publications, New York (1997)

  12. Citkin, A.: On admissible rules of intuitionistic propositional logic. Math. USSR, Sb. 31, 279–288 (1977). (A. Tsitkin)

  13. Diego, A.: Sur les algèbres de Hilbert. Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI. Gauthier-Villars, Paris (1966)

  14. Evans T.: The word problem for abstract algebras. J. Lond. Math. Soc. 26, 64–71 (1951)

    Article  MATH  Google Scholar 

  15. Evans, T.: Some connections between residual finiteness, finite embeddability and the word problem. J. Lond. Math. Soc. (2) 1, 399–403 (1969)

  16. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier B. V., Amsterdam (2007)

  17. Grätzer, G.: Universal algebra, 2nd edn. Springer, New York (2008). (With appendices by Grätzer, Bjarni Jónsson, Walter Taylor, Robert W. Quackenbush, Günter H. Wenzel, and Grätzer and W. A. Lampe)

  18. Jankov, V.A.: On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures. Dokl. Akad. Nauk SSSR 151, 1293–1294 (1963). English translation in Sov. Math. Dokl. 4, 1203–1204 (1963)

  19. Jankov, V.A.: Conjunctively irresolvable formulae in propositional calculi. Izv. Akad. Nauk SSSR Ser. Mat. 33, 18–38 (1969). English translation in Math. of the USSR-Izvestiya. 3:1, 1735 (1969)

  20. Jeřábek E.: Canonical rules. J. Symb. Logic 74(4), 1171–1205 (2009)

    Article  MATH  Google Scholar 

  21. Köhler P.: Brouwerian semilattices. Trans. Am. Math. Soc. 268(1), 103–126 (1981)

    Article  MATH  Google Scholar 

  22. Mal’cev, A.: Algebraic systems. Die Grundlehren der mathematischen Wissenschaften, Band 192. Springer/Akademie-Verlag, Berlin, XII, 317 p (1973)

  23. McKay C.G.: The decidability of certain intermediate propositional logics. J. Symb. Logic 33, 258–264 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  24. McKinsey, J.C.C.: A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. J. Symb. Logic 6, 117–134 (1941)

  25. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. (2) 45, 141–191 (1944)

  26. McKinsey, J.C.C., Tarski, A.: On closed elements in closure algebras. Ann. Math. (2) 47, 122–162 (1946)

  27. McNulty, G.F., Székely, Z., Willard, R.: Equational complexity of the finite algebra membership problem. Int. J. Algebra Comput. 18(8), 1283–1319 (2008)

  28. Rybakov, V.V.: Admissibility of Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, vol. 136. North-Holland Publishing Co., Amsterdam (1997)

  29. Rybakov, V.V.: Quasi-characteristic inference rules for modal logics. In: Logical Foundations of Computer Science (Yaroslavl, 1997). Lecture Notes in Computer Science, vol. 1234, pp. 333–341. Springer, Berlin (1997)

  30. Scott, D.S.: Rules and derived rules. In: Stenlund, S. (ed.) Logical Theory and Semantic Analysis, Essays dedicated to Stig Kanger, pp. 147–161. D. Reidel Publishing Company, Dordrecht (1974)

  31. Shoesmith, D.J., Smiley, T.J.: Multiple-Conclusion Logic. Cambridge University Press, Cambridge (2008). (Reprint of the 1978 original [MR0500331] (1978))

  32. Tomaszewski, E.: On sufficiently rich sets of formulas. PhD thesis, Institute of Philosophy, JagellonianUniversity, Krakov (2003)

  33. Zakharyashchev, M.V.: Syntax and semantics of superintuitionistic logics. Algebra i Log. 28(4), 402–429, 486–487 (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Citkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citkin, A. Characteristic Inference Rules. Log. Univers. 9, 27–46 (2015). https://doi.org/10.1007/s11787-015-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-015-0116-x

Mathematics Subject Classification

Keywords

Navigation