Skip to main content
Log in

A Buchholz Rule for Modal Fixed Point Logics

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

Buchholz’s Ωμ+1-rules provide a major tool for the proof-theoretic analysis of arithmetical inductive definitions. The aim of this paper is to put this approach into the new context of modal fixed point logic. We introduce a deductive system based on an Ω-rule tailored for modal fixed point logic and develop the basic techniques for establishing soundness and completeness of the corresponding system. In the concluding section we prove a cut elimination and collapsing result similar to that of Buchholz (Iterated inductive definitions and subsystems of analysis: recent proof theoretic studies. Lecture notes in mathematics, vol. 897, pp. 189–233, Springer, Berlin, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aehlig K.: Induction and inductive definitions in fragments of second order arithmetic. J. Symb. Log. 70(4), 1087–1107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barwise J.: Admissible Sets and Structures. Springer, Berlin (1975)

    MATH  Google Scholar 

  3. Buchholz, W.: The Ωμ+1-rule. In: Buchholz, W., Feferman, S., Pohlers, W., Sieg, W. (eds.) Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof Theoretic Studies. Lecture Notes in Mathematics, vol. 897, pp. 189–233. Springer, Berlin (1981)

  4. Buchholz W.: Explaining the Gentzen-Takeuti reduction steps: a second-order system. Arch. Math. Log. 40(4), 255–272 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buchholz W., Schütte K.: Proof Theory of Impredicative Subsystems of Analysis. Bibliopolis, Naples (1988)

    MATH  Google Scholar 

  6. Gordeev L.: Proof-theoretic analysis: weak systems of functions and classes. Ann. Pure Appl. Log. 38, 1–121 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jäger G., Kretz M., Studer T.: Canonical completeness for infinitary μ. J. Log. Algebr. Program. 76(2), 270–292 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kozen D.: A finite model theorem for the propositional μ-calculus. Stud. Log. 47(3), 233–241 (1988)

    Article  MathSciNet  Google Scholar 

  9. Moschovakis, Y.N.: Elementary Induction on Abstract Structures. Studies in Logic and the Foundations of Mathematics, vol. 77. North-Holland, Amsterdam (1974) (reprinted by Dover)

  10. Santocanale L., Venema Y.: Completeness for flat modal fixpoint logics. In: Dershowitz, N., Voronkov, A. (eds) LPAR 2007. LNCS, vol. 4790, pp. 499–513. Springer, Berlin (2007)

    Google Scholar 

  11. Towsner H.: Ordinal analysis by transformations. Ann. Pure Appl. Log. 157(2–3), 269–280 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Walukiewicz I.: Completeness of Kozen’s axiomatization of the propositional μ-calculus. Inf. Comput. 157, 142–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Studer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, G., Studer, T. A Buchholz Rule for Modal Fixed Point Logics. Log. Univers. 5, 1–19 (2011). https://doi.org/10.1007/s11787-010-0022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-010-0022-1

Mathematics Subject Classification (2010)

Keywords

Navigation