Skip to main content
Log in

An Implementation of the Lê–Teissier Method for Computing Local Euler Obstructions

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Local Euler obstruction of a hypersurface with possibly positive dimensional singularities, a constructible function on the hypersurface, is considered in the context of symbolic computation. It is shown that the method due to Lê and Teissier (Ann Math 114:457–491, 1981) that requires genericity conditions for computing local Euler obstructions can be realized as an algorithm in a deterministic way. The key ideas of the proposed algorithm are the use of comprehensive Gröbner systems and of parametric local cohomology systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbosa, G.F., Grulha Jr., N.G., Saia, M.J.: Minimal Whitney stratification and Euler obstruction of determinants. Geom. Dedic. 186, 173–180 (2017)

    Article  MATH  Google Scholar 

  2. Behrend, K.: Donaldson–Thomas type invariants via microlocal geometry. Ann. Math. 170, 1307–1338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brasselet, J.-P., Schwartz, M.-H.: Sur les classes de Chern d’un ensemble analytique complexe. Astérisques 82–83, 99–147 (1981)

    MATH  Google Scholar 

  4. Brasselet, J.-P.: The Euler obstruction and the Chern obstruction. Bull. Lond. Math. Soc. 42, 1035–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brasselet, J.-P., Lê, L.T., Seade, J.: Euler obstruction and indices of vector fields. Topology 39, 1193–1208 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brasselet, J.-P., Grulha Jr., M.G.: Local Euler obstruction, old and new II. Lond. Math. Soc. Lect. Notes Ser. 380, 23–45 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Brylinski, J.L., Dubson, A., Kashiwara, M.: Formule de l’indice pour les modules holonomes et obstruction d’Euler. C. R. Acad. Sci. Paris Sér. A 293, 573–576 (1981)

    MathSciNet  MATH  Google Scholar 

  8. Dalbelo, T.M., Grulha Jr., N.G., Pereira, M.S.: Toric surfaces, vanishing Euler characteristics and Euler obstruction of a function. Ann. Faculté des Sci. Toulouse 24, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dalbelo, T.M., Grulha Jr., N.G.: The Euler obstruction and torus action. Geom. Dedic. 175, 373–383 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubson, A.: Classes caractéristiques des variétés singulières. C. R. Acad. Sci. Paris Sér. A 287, 237 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Dubson, A.: Calcul des Invariants Numeriques des Singularités et Applications, Somderforschungsbereich, vol. 40. Univ. Bonn, Bonn (1981)

    Google Scholar 

  12. Dutertre, N., Grulha Jr., N.G.: Lê–Greuel type formula for the Euler obstruction and application. Adv. Math. 251, 127–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ernström, L.: Topological Radon transforms and the local Euler obstruction. Duke Math. 76, 1–21 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaffney, T., Grulha, N.G., Ruas, M.A.S.: The local Euler obstruction and topology of the stabilization of associated determinantal varieties (2017). arXiv:1611.00749v7

  15. Grulha Jr., N.G.: L’obstruction d’Euler local d’une application. Ann. Facultés des Sci. de Toulouse 17, 53–71 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grulha Jr., N.G.: The Euler obstruction and Bruce–Roberts Milnor number. Quart. J. Math. 60, 291–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henry, J.P., Merle, M., Sabbah, C.: Sur la condition de Thom stricte pour un morphisme analytique complexe. Ann. Scient. Éc. Norm. Sup. 17, 227–268 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jorge Pérez, V.H., Levcovitz, D., Saia, M.J.: Invariants, equisingularity and Euler obstruction of map germs \( {\mathbb{C}}^n \) to \( {\mathbb{C}}^n \). J. Reine Angew. Math. 587, 145–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of International Symposium on Symbolic and Algebraic Computation 2010, pp. 29–36. ACM (2010)

  20. Kashiwara, M.: Index theorem for maximally overdetermined systems of linear differential equations. Proc. Jpn. Acad. 49, 803–804 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kashiwara, M.: Systems of Microdifferential Equations. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  22. Lê, L.T., Teissier, B.: Variété polaires locales et classes de Chern de variétés singulières. Ann. Math. 114, 457–491 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. MacPherson, R.D.: Chern class for singular algebraic varieties. Ann. Math. 100, 423–432 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. Lecture Notes in Computer Science, 7442, pp. 248–259, Springer (2012)

  25. Nabeshima, K., Tajima, S.: Computing \( \mu ^{\ast } \) sequences of hypersurface isolated singularities via parametric local cohomology systems. Acta Math. Vietnam 42, 279–288 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nabeshima, K., Tajima, S.: Solving parametric ideal membership problems and computing integral numbers in a ring of convergent power series via comprehensive Gröbner systems. Math. Comput. Sci. (to appear)

  28. Noro, M., Takeshima, T.: Risa/Asir—a computer algebra system. In: Proceedings of International Symposium on Symbolic and Algebraic Computation 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html

  29. Schwartz, M.-H.: Classes caractéristiques définies par une stratification d’une variété analytique complexe. C.R.A.S. 260, 3262–3264 et 3535–3537 (1965)

  30. Schwartz, M.-H.: Lectures on Stratification of Complex Analytic Set. Tata Inst (1966)

  31. Schwartz, M.-H.: Classes de Chern des Ensembles Analytiques. Hermann, Paris (2000)

    MATH  Google Scholar 

  32. Shibuta, T., Tajima, S.: An algorithm for computing the Hilbert–Samuel multiplicities and reductions of zero-dimensional ideal of Cohen–Macaulay local rings (4 Oct. 2017). arXiv:1710.01435v1 [math AC]

  33. Spanier, E.H.: Algebraic Topology. McGraw-Hill, Tokyo (1966)

    MATH  Google Scholar 

  34. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of International Symposium on Symbolic and Algebraic Computation 2006, pp. 326–331. ACM Press (2006)

  35. Teissier, B.: Variétés polaires I. Invent. Math. 40, 267–292 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Teissier, B.: Variétés polaires II. Lect. Notes Math. 961, 314–491 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima.

Additional information

This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (Nos. 15KT0102, 15K04891) and JSPS Grant-in-Aid for Young Scientist (B) (No. 15K17513).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajima, S., Nabeshima, K. An Implementation of the Lê–Teissier Method for Computing Local Euler Obstructions. Math.Comput.Sci. 13, 273–280 (2019). https://doi.org/10.1007/s11786-018-0366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-018-0366-0

Keywords

Mathematics Subject Classification

Navigation