Skip to main content
Log in

Triangulating Smooth Submanifolds with Light Scaffolding

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We propose an algorithm to sample and mesh a k-submanifold \({\mathcal{M}}\) of positive reach embedded in \({\mathbb{R}^{d}}\) . The algorithm first constructs a crude sample of \({\mathcal{M}}\) . It then refines the sample according to a prescribed parameter \({\varepsilon}\) , and builds a mesh that approximates \({\mathcal{M}}\) . Differently from most algorithms that have been developed for meshing surfaces of \({\mathbb{R} ^3}\) , the refinement phase does not rely on a subdivision of \({\mathbb{R} ^d}\) (such as a grid or a triangulation of the sample points) since the size of such scaffoldings depends exponentially on the ambient dimension d. Instead, we only compute local stars consisting of k-dimensional simplices around each sample point. By refining the sample, we can ensure that all stars become coherent leading to a k-dimensional triangulated manifold \({\hat{\mathcal{M}}}\) . The algorithm uses only simple numerical operations. We show that the size of the sample is \({O(\varepsilon ^{-k})}\) and that \({\hat{\mathcal{M}}}\) is a good triangulation of \({\mathcal{M}}\) . More specifically, we show that \({\mathcal{M}}\) and \({\hat{\mathcal{M}}}\) are isotopic, that their Hausdorff distance is \({O(\varepsilon ^{2})}\) and that the maximum angle between their tangent bundles is \({O(\varepsilon )}\) . The asymptotic complexity of the algorithm is \({T(\varepsilon) = O(\varepsilon ^{-k^2-k})}\) (for fixed \({\mathcal{M}, d}\) and k).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch U., Meyer W.T.: Injectivity radius estimates and sphere theorems. In: Grove, K., Petersen, P. (eds) Comparison Geometry., Mathematical Sciences Research Institute (MSRI) Publications, Berkeley (1997)

    Google Scholar 

  2. Amenta N., Choi S., Dey T.K., Leekha N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12(1–2), 125–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger M.: Geometry 2. Universitext, Springer, Berlin (1990)

    Google Scholar 

  4. Bhaniramka P., Wenger R., Crawfis R.: Isosurface construction in any dimension using convex hulls. IEEE Trans. Vis. Comput. Graph 10(2), 130–141 (2004)

    Article  Google Scholar 

  5. Boissonnat J.-D., Flototto J.: A coordinate system associated with points scattered on a surface. Comput.-Aided Des. 36, 161–174 (2004)

    Article  Google Scholar 

  6. Boissonnat, J.-D., Ghosh, A.: Manifold reconstruction using tangential Delaunay complexes. In: Proceedings of 26th Annual Symposium on Computational Geometry (2010, in preparation)

  7. Boissonnat J.-D., Oudot S.Y.: Provably good sampling and meshing of surfaces. Graph. Models 67, 405–451 (2005)

    Article  MATH  Google Scholar 

  8. Boissonnat, J.-D., Oudot, S.Y.: Provably good sampling and meshing of Lipschitz surfaces. In: Proceedings of ACM Symposium on Computational Geometry, pp. 337–346 (2006)

  9. Boissonnat, J.-D., Wormser, C., Yvinec M.: Locally uniform anisotropic meshing. In: Proceedings of ACM Symposium on Computational Geometry, pp. 270–277 (2008)

  10. Cairns S.S.: A simple triangulation method for smooth manifolds. Bull. Am. Math. Soc. 67(4), 389–390 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cazals F., Giesen J.: Delaunay triangulation based surface reconstruction. In: Boissonnat, J.-D., Teillaud, M. (eds) Effective Computational Geometry for Curve and Surfaces, Springer, Berlin (2006)

    Google Scholar 

  12. Cheeger J., Gromov M., Taylor M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Cheng, S.-W., Dey, T.K., Ramos, E.A.: Manifold reconstruction from point samples. In: Proceedings of ACM-SIAM Symposium Discrete Algorithms, pp. 1018–1027 (2005)

  14. Chew, L.P.: Guaranteed-quality Delaunay meshing in 3D. In: Proceedings of ACM Symposium on Computational Geometry, pp. 391–393 (2006)

  15. Clarkson, K.: Building triangulations using \({\varepsilon}\) -nets. In: Proceedings of ACM Symposium on Theory of Computing, pp. 326–335 (2006)

  16. Dey, T.K., Li, K.: Topology from data via geodesic complexes. Tech Report OSU-CISRC-3/09-TR05 (2009)

  17. Dudley R.M.: Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory 10, 227–236 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Edelsbrunner H.: Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  19. Federer H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Federer H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  21. Fu J.H.G.: Convergence of curvatures in secant approximations. J. Differ. Geom. 37, 177–190 (1993)

    MATH  Google Scholar 

  22. Giesen, J., Wagner, U.: Shape dimension and intrinsic metric from samples of manifolds. In: Proceedings of ACM Symposium on Computational Geometry, pp. 329–337 (2003)

  23. Gray A.: Tubes. Addison-Wesley, Reading (1990)

    MATH  Google Scholar 

  24. Gruber P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies I. Forum Math. 5, 281–297 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gruber P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henderson M.E.: Multiple parameter continuation: computing implicitly defined k-manifolds. Int. J. Bifurc. Chaos 12(3), 451–476 (2002)

    Article  MATH  Google Scholar 

  27. Kamenev G.K.: The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies. Comput. Math. Math. Phys. 48(5), 724–738 (2008)

    Article  MathSciNet  Google Scholar 

  28. Li X.-Y.: Generating well-shaped d-dimensional Delaunay meshes. Theor. Comput. Sci. 296(1), 145–165 (2003)

    Article  MATH  Google Scholar 

  29. Min C.: Simplicial isosurfacing in arbitrary dimension and codimension. J. Comput. Phys. 190, 295–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Munkres, J.R.: Elementary differential topology. Annals of Mathematics Studies. Princeton University Press (1966)

  31. Niyogi P., Smale S., Weinberger S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1), 419–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peyré G., Cohen L.: Geodesic computations for fast and accurate surface remeshing and parameterization. Prog. Nonlinear Differ. Equ. Appl. 63, 157–171 (2005)

    Article  Google Scholar 

  33. Ruppert J.: A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms 18(3), 548–585 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Whitehead J.H.C.: On C 1-complexes. Ann. Math. 41, 809–824 (1940)

    Article  MathSciNet  Google Scholar 

  35. Whitney H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Daniel Boissonnat.

Additional information

This research has been partially supported by the Agence Nationale de la Recherche (project GAIA 07-BLAN-0328-04).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boissonnat, JD., Ghosh, A. Triangulating Smooth Submanifolds with Light Scaffolding. Math.Comput.Sci. 4, 431 (2010). https://doi.org/10.1007/s11786-011-0066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-011-0066-5

Keywords

Mathematics Subject Classification (2000)

Navigation