Skip to main content
Log in

Partitioning Bispanning Graphs into Spanning Trees

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Given a weighted bispanning graph \({{\mathcal B} = (V, P, Q)}\) consisting of two edge-disjoint spanning trees P and Q such that w(P) < w(Q) and Q is the only spanning tree with weight w(Q), it is conjectured that there are |V| − 1 spanning trees with pairwise different weight where each of them is smaller than w(Q). This conjecture due to Mayr and Plaxton is proven for bispanning graphs restricted in terms of the underlying weight function and the structure of the bispanning graphs. Furthermore, a slightly stronger conjecture is presented and proven for the latter class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgart, M.: Partitioning bispanning graphs into spanning trees. Technical Report TUM-I0813, Institut für Informatik, Technische Universität München (2008)

  2. Bondy J.A.: Transversal matroids, base-orderable matroids and graphs. Q. J. Math. 23(1), 81–89 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borůvka O.: O jistém problému minimálním. Práca Moravské Přírodověcké Společnosti 3, 37–58 (1926) (in Czech)

    Google Scholar 

  4. Brualdi R.A.: Comments on bases in dependence structures. Bull. Aust. Math. Soc. 1, 161–167 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brylawski T.H.: Some properties of basic families of subsets. Discrete Math. 6, 333–341 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dirac G.A.: A property of 4-chromatic graphs and some remarks on critical graphs. J. Lond. Math. Soc. 27, 85–92 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ingleton, A.W.: Non-base-orderable matroids. In: Proceedings of the 5th British Combinatorial Conference (BCC’75). Congressus Numerantium, vol. 15, pp. 355–359 (1975)

  8. Kano M.: Maximum and k-th maximal spanning trees of a weighted graph. Combinatorica 7(2), 205–214 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kawamoto T., Kajitani Y., Shinoda S.: On the second maximal spanning trees of a weighted graph (in Japanese). Trans. IECE Jpn. 61-A, 988–995 (1978)

    MathSciNet  Google Scholar 

  10. Keijsper J., Pendavingh R., Schrijver A.: Adjacency, inseparability, and base orderability in matroids. Eur. J. Comb. 21(4), 487–502 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kruskal J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mayr E.W., Plaxton C.G.: On the spanning trees of weighted graphs. Combinatorica 12(4), 433–447 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Prim R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Google Scholar 

  14. Schrijver A.: Combinatorial Optimization. Springer, Berlin (2003)

    MATH  Google Scholar 

  15. Welsh D.: Matroid Theory. Academic Press, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Baumgart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgart, M. Partitioning Bispanning Graphs into Spanning Trees. Math.Comput.Sci. 3, 3–15 (2010). https://doi.org/10.1007/s11786-009-0011-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-009-0011-z

Keywords

Mathematics Subject Classification (2000)

Navigation