Skip to main content
Log in

On Weaving g-Frames for Hilbert Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Weaving frames are powerful tools in wireless sensor networks and pre-processing signals. In this paper, we introduce the concept of weaving for g-frames in Hilbert spaces. We first give some properties of weaving g-frames and present two necessary conditions in terms of frame bounds for weaving g-frames. Then we study the properties of weakly woven g-frames and give a sufficient condition for weaving g-frames. It is shown that weakly woven is equivalent to woven. Two sufficient conditions for weaving g-Riesz bases are given. And a weaving equivalent of an unconditional g-basis for weaving g-Riesz bases is considered. Finally, we present Paley–Wiener-type perturbation results for weaving g-frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Cabrelli, C., Molter, U.M.: Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(Rd). Appl. Comput. Harmon. Anal. 17(2), 119–140 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bemrose, T., Casazza, P.G., Gröchenig, K., Lammers, M.C., Lynch, R.G.: Weaving frames. Oper. Matrices 10(4), 1093–1116 (2016)

    Article  MathSciNet  Google Scholar 

  3. Casazza, P.G., Freeman, D., Lynch, R.G.: Weaving Schauder frames. J. Approx. Theory 211, 42–60 (2016)

    Article  MathSciNet  Google Scholar 

  4. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25(1), 114–132 (2008)

    Article  MathSciNet  Google Scholar 

  5. Casazza, P.G., Lynch, R.G.: Weaving properties of Hilbert space frames. In: 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 110–114. IEEE (2015)

  6. Christensen, O.: A Paley–Wiener theorem for frames. Proc. Am. Math. Soc. 123(7), 2199–2201 (1995)

    Article  MathSciNet  Google Scholar 

  7. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MathSciNet  Google Scholar 

  8. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  9. Ehler, M.: Random tight frames. J. Fourier Anal. Appl. 18(1), 1–20 (2012)

    Article  MathSciNet  Google Scholar 

  10. Fornasier, M.: Quasi-orthogonal decompositions of structured frames. J. Math. Anal. Appl. 289(1), 180–199 (2004)

    Article  MathSciNet  Google Scholar 

  11. Han, D.: Frame representations and Parseval duals with applications to Gabor frames. Trans. Am. Math. Soc. 360(6), 3307–3326 (2008)

    Article  MathSciNet  Google Scholar 

  12. Han, D.G., Li, P.T., Meng, B., Tang, W.S.: Operator valued frames and structured quantum channels. Sci. China Math. 54(11), 2361–2372 (2011)

    Article  MathSciNet  Google Scholar 

  13. Klyachko, A.A., Can, M.A., Binicioğlu, S., Shumovsky, A.S.: Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101(2), 020403 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kovacevic, J., Dragotti, P.L., Goyal, V.K.: Filter bank frame expansions with erasures. IEEE Trans. Inf. Theory 48(6), 1439–1450 (2002)

    Article  MathSciNet  Google Scholar 

  15. Leng, J., Han, D.: Optimal dual frames for erasures II. Linear Algebra Appl. 435(6), 1464–1472 (2011)

    Article  MathSciNet  Google Scholar 

  16. Leng, J., Han, D., Huang, T.: Optimal dual frames for communication coding with probabilistic erasures. IEEE Trans. Signal Process. 59(11), 5380–5389 (2011)

    Article  MathSciNet  Google Scholar 

  17. Li, D., Leng, J., Huang, T., Xu, Y.: Some equalities and inequalities for probabilistic frames. J. Inequal. Appl. 2016(1), 245 (2016)

    Article  MathSciNet  Google Scholar 

  18. Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10(4), 409–431 (2004)

    Article  MathSciNet  Google Scholar 

  19. Sun, Q., Tang, W.: Nonlinear frames and sparse reconstructions in Banach spaces. J. Fourier Anal. Appl. 23, 1–35 (2015)

    MathSciNet  Google Scholar 

  20. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322(1), 437–452 (2006)

    Article  MathSciNet  Google Scholar 

  21. Vashisht, L.K., et al.: On continuous weaving frames. Adv. Pure Appl. Math. 8(1), 15–31 (2017)

    Article  MathSciNet  Google Scholar 

  22. Vashisht, L.K., et al.: Weaving properties of generalized continuous frames generated by an iterated function system. J. Geom. Phys. 110, 282–295 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zhu, Y.C.: Characterizations of g-frames and g-Riesz bases in Hilbert spaces. Acta Math. Sin. 24(10), 1727–1736 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported by the the Natural Science Foundation of Anhui Province (No. 1908085MF175) and Fundamental Research Funds for the Central Universities (No. JZ2019HGBZ0129) and National Natural Science Foundation of China (Nos. 11271001 and 61370147), and the Fundamental Research Funds for the Central Universities (No. ZYGX2016KYQD143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwei Li.

Additional information

Communicated by Ilwoo Cho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Leng, J., Huang, T. et al. On Weaving g-Frames for Hilbert Spaces. Complex Anal. Oper. Theory 14, 33 (2020). https://doi.org/10.1007/s11785-020-00991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-00991-7

Keywords

Mathematics Subject Classification

Navigation