Skip to main content
Log in

Finite Two-Point Space Without Quantization on Noncommutative Space from a Generalized Fractional Integral Operator

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We show in this communication that if the Mellin transform is replaced by a fractional generalized integral on a noncommutative space and using the basic axioms of spectral triples, the two-point space problem is finite without passing to quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann, B., Bar, C.: The Einstein–Hilbert action as a spectral action, Vortrag auf der Arbeitstagung “Das Standardmodell der Elementarteichenphysik unter mathematisch geometrischem Aspekt”, Hesselberg 1999, erschienen im Tagungsband: Scheck, F., Upmeiner, H. (eds.) Noncommutative Geometry and the Standard Model of Elementary Particle Physics, Springer Lecture Notes in Physics 596 (2002)

  2. Baleanu, D., Agrawal, P.: On generalized fractional integral operators and the generalized Gauss hypergeometric functions. Abs. Appl. Anal. Article ID630840 (2014)

  3. Bonilla, B., Kilbas, A.A., Rivero, M., Rodriguez, L., Trujillo, J.J.: Modified Bessel-type function and solution of differential and integral equations. Indian J. Pure Appl. Math. 31(1), 93–109 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Butera, S., Di Paola, M.: A physically based connection between fractional calculus and fractal geometry. Ann. Phys. 350, 146–158 (2014)

    Article  MathSciNet  Google Scholar 

  5. Calcagni, G.: Geometry of fractional spaces. Adv. Theor. Math. Phys. 16, 549–644 (2012)

    Article  MathSciNet  Google Scholar 

  6. Calcagni, G.: Geometry and field theory in multi-fractional spacetime. J. High. Energy Phys. 2012, 065 (2012)

  7. Calcagni, G.: Fractional and noncommutative spacetimes. Phys. Rev. D 84, 125002–125017 (2011)

    Article  Google Scholar 

  8. Christensen, E., Ivan, C., Lapidus, M.L.: Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217, 42–78 (2008)

    Article  MathSciNet  Google Scholar 

  9. Connes, A.: Noncommutative Geometry. Academic Press, London (1994)

    MATH  Google Scholar 

  10. Connes, A.: Gravity coupled with matter and the foundations of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996)

    Article  Google Scholar 

  11. Di Paola, M., Zingales, M.: The multiscale stochastic model of fractional hereditary materials (FHM). In: IUTAM Symposium on Multiscale Problems in Stochastic Mechanics, Procedia IUTAM, vol. 6, pp. 50–59 (2013)

  12. Di Paola, M., Failla, G., Pirrotta, A., Sofi, A., Zingales, M.: The mechanically based non-local elasticity: an overview of main results and future challenges. Philos. Trans. R. Soc. A371(1993), 20120433 (2013)

    Article  MathSciNet  Google Scholar 

  13. El-Nabulsi, R.A.: Fractional elliptic operators from a generalized Glaeske–Kilbas–Saigo–Mellin transform. Func. Anal. Approx. Comp. 7(2), 29–33 (2015)

    MathSciNet  MATH  Google Scholar 

  14. El-Nabulsi, R.A., Wu, G.-C.: Fractional complexified field theory from Saxena–Kumbhat fractional integral, fractional derivative of order \((\alpha,\beta )\) and dynamical fractional integral exponent. Afr. Disp. J. Math. 13(2), 45–61 (2012)

    MathSciNet  MATH  Google Scholar 

  15. El-Nabulsi, R.A.: Glaeske–Kilbas–Saigo fractional integration and fractional Dixmier trace. Acta. Math. Viet. 37(2), 149–160 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Eridani, A., Gunawan, H., Nakai, E.: On generalized fractional integral operators. Sci. Math. Jap. 60(3), 539–550 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Goldfain, E.: Fractional dynamics and the standard model for particle physics. Commun. Nonlinear Sci. Numer. Simul. 13, 1397–1404 (2008)

    Article  MathSciNet  Google Scholar 

  18. Goldfain, E.: Complexity in quantum field theory and physics beyond the standard model. Chaos Solitons Fractals 28, 913–922 (2006)

    Article  Google Scholar 

  19. Goldfain, E.: Fractional dynamics, Cantorian spacetime and the gauge hierarchy problem. Chaos Solitons Fractals 22, 513–520 (2004)

    Article  Google Scholar 

  20. Guliyev, V. S., Ismayilova, A. F., Kucukaslan, A., Serbetci, A.: Generalized fractional integral operators on generalized local Morrey spaces. J. Func. Space 2015, Article ID594323, 8 pages (2015)

  21. Guliyev, V.S., Mustafaev, R.C.: On generalized fractional integrals. Trans. Acad. Sci. Azerbaijan Ser. Phys. Tech. Math. Sci. 21(4), 63–71, 237 (2001)

  22. Gunawan, H.: A note on the generalized fractional integral operators. J. Indones. Math. Soc. (MIHMI) 9(1), 39–43 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Hale, M.: Path integral quantization of finite noncommutative geometries. J. Geom. Phys. 44, 115–128 (2002)

    Article  MathSciNet  Google Scholar 

  24. Herrmann, R.: Fractional Calculus: An Introduction for Physicist. World Scientific, Singapore (2014)

    Book  Google Scholar 

  25. Herrmann, R.: Gauge invariance in fractional field theories. Phys. Lett. A 372, 5515–5522 (2008)

    Article  MathSciNet  Google Scholar 

  26. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V., Amsterdam (2006)

    MATH  Google Scholar 

  28. Kilbas, A.A., Trujillo, J.J.: Computation of fractional integrals via functions of hypergeometric and Bessel type. J. Comput. Appl. Math. 118, 223–239 (2000)

    Article  MathSciNet  Google Scholar 

  29. Kiryakova, V.: On two Saigo’s fractional integral operators in the class of univalent functions. Frac. Calc. Appl. Anal. 9(2), 159–176 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Lauscher, O., Reuter, M.: Fractal spacetime structure in asymptotically safe gravity. J. high. Energy. Phys. 10, 050 (2005)

    Article  MathSciNet  Google Scholar 

  31. Martinetti, P.: From Monge to Higgs: a survey of distance computations in noncommutative geometry. In: Proceedings of the Workshop “Noncommutative Geometry and Optimal Transpor”, Besancon November (2014). arXiv:1604.00499

  32. Nakai, E.: On generalized fractional integrals. Taiwan. J. Math. 5, 587–602 (2001)

    Article  MathSciNet  Google Scholar 

  33. Nigmatullin, R.R., Le Mehaute, A.: Is there geometrical/physical meaning of the fractional integral with complex exponent? J. Non-Cryst. Solids 351(3336), 2888–2899 (2005)

    Article  Google Scholar 

  34. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  35. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  36. Rocco, A., West, B.J.: Fractional calculus and the evolution of fractal phenomenon. Physica A 265(34), 535–546 (1999)

    Article  Google Scholar 

  37. Saigo, M.: A certain boundary value problem for the Euler–Darboux equation. Math. Japon. 24, 377–385 (1979); II, ibid. 25, 211–220 (1980); III, ibid. 26–119 (1981)

  38. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon et alibi (1993)

    MATH  Google Scholar 

  39. Srivastava, H.M., Saigo, M.: Multiplication of fractional calculus operators and boundary value problems involving the Euler–Darboux equation. J. Math. Anal. Appl. 121, 325–369 (1987)

    Article  MathSciNet  Google Scholar 

  40. Tatom, F.B.: The relationship between fractional calculus and fractals. Fractals 03, 217–229 (1995)

    Article  MathSciNet  Google Scholar 

  41. Vacaru, S.I.: Fractional dynamics from Einstein gravity, general solutions, and black holes. Int. J. Theor. Phys. 51, 1338–1359 (2012)

    Article  MathSciNet  Google Scholar 

  42. Vassilevich, D.: Can spectral action be a window to very high energies? J. Phys. Conf. Ser. 670, 012050 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Additional information

Communicated by Daniel Aron Alpay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Finite Two-Point Space Without Quantization on Noncommutative Space from a Generalized Fractional Integral Operator. Complex Anal. Oper. Theory 12, 1609–1616 (2018). https://doi.org/10.1007/s11785-018-0766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-018-0766-9

Keywords

Mathematics Subject Classification

Navigation