Skip to main content
Log in

Solutions for the Klein–Gordon and Dirac Equations on the Lattice Based on Chebyshev Polynomials

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The main goal of this paper is to adopt a multivector calculus scheme to study finite difference discretizations of Klein–Gordon and Dirac equations for which Chebyshev polynomials of the first kind may be used to represent a set of solutions. The development of a well-adapted discrete Clifford calculus framework based on spinor fields allows us to represent, using solely projection based arguments, the solutions for the discretized Dirac equations from the knowledge of the solutions of the discretized Klein–Gordon equation. Implications of those findings on the interpretation of the lattice fermion doubling problem is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becher, P., Joos, H.: The Dirac–Kähler equation and fermions on the lattice. Z. Phys. C 15, 343–365 (1982)

    Article  MathSciNet  Google Scholar 

  2. Bohm, D.: Space, time, and the quantum theory understood in terms of discrete structural process. In: Proceedings of the International Conference on Elementary Particles, Kyoto, pp. 252–287 (1965)

  3. Borici, A.: Creutz fermions on an orthogonal lattice. Phys. Rev. D 78(7), 074504 (2008)

    Article  Google Scholar 

  4. Borštnik, N.M., Nielsen, H.B.: Dirac-Kähler approach connected to quantum mechanics in Grassmann space. Phys. Rev. D 62(4), 044010 (2000)

    Article  MathSciNet  Google Scholar 

  5. Cerejeiras, P., Kähler, U., Ku, M., Sommen, F.: Discrete Hardy Spaces. J. Fourier Anal. Appl. 20(4), 715–750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, Y.-S., Fannjiang, A.C., Paulino, G.H.: Integral equations with hypersingular kernels-theory and applications to fracture mechanics. Int. J. Eng. Sci. 41(7), 683–720 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cole, E.A.B.: Transition from a continuous to a discrete space-time scheme. Il Nuovo Cimento A 66(4), 645–656 (1970)

    Article  MATH  Google Scholar 

  9. Constales, D., Faustino, N., Kraußhar, R.S.: Fock spaces. Landau operators and the time-harmonic Maxwell equations. J. Phys. A Math. Theor. 44(13), 135303 (2011)

    Article  Google Scholar 

  10. Creutz, M.: Local chiral fermions, The XXVI International Symposium on Lattice Field Theory (2008). arXiv:0808.0014

  11. da Rocha, R., Vaz Jr., J.: Extended Grassmann and Clifford algebras. Adv. Appl. Clifford Algebr. 16(2), 103–125 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. da Veiga, P.A.F., O’Carroll, M., Schor, R.: Excitation spectrum and staggering transformations in lattice quantum models. Phys. Rev. E 66(2), 027108 (2002)

    Article  Google Scholar 

  13. Dimakis, A., Müller-Hoissen, F.: Discrete differential calculus: graphs, topologies, and gauge theory. J. Math. Phys. 35(12), 6703–6735 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Faustino, N., Kähler, U., Sommen, F.: Discrete Dirac operators in Clifford analysis. Adv. Appl. Clifford Algebr. 17(3), 451–467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Faustino, N.: Discrete Clifford analysis, Dissertation. Ria Repositório Institucional, Universidade de Aveiro (2009). http://hdl.handle.net/10773/2942

  16. Faustino, N.: Classes of hypercomplex polynomials of discrete variable based on the quasi-monomiality principle. Appl. Math. Comput. 247, 607–622 (2014)

    Article  MathSciNet  Google Scholar 

  17. Friedan, D.: A proof of the Nielsen–Ninomiya theorem. Commun. Math. Phys 85(4), 481–490 (1982)

    Article  MathSciNet  Google Scholar 

  18. Froyen, S.: Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations. Phys. Rev. B 39(5), 3168–3172 (1989)

    Article  Google Scholar 

  19. Gürlebeck, K., Hommel, A.: On finite difference Dirac operators and their fundamental solutions. Adv. Appl. Clifford Algebr. 11(2), 89–106 (2001)

    Article  MATH  Google Scholar 

  20. Kanamori, I., Kawamoto, N.: Dirac–Kaehler fermion from Clifford product with noncommutative differential form on a lattice. Int. J. Mod. Phys. A 19(05), 695–736 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kogut, J., Susskind, L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11(2), 395–408 (1975)

    Article  Google Scholar 

  22. Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Monaco, R.L., de Oliveira, E.C.: A new approach for the Jeffreys–Wentzel–Kramers–Brillouin theory. J. Math. Phys. 35(12), 6371–6378 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Montvay, I., Münster, G.: Quantum Fields on a Lattice. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  25. Nielsen, H.B., Ninomiya, M.: A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105(2), 219–223 (1981)

    Article  Google Scholar 

  26. Rabin, J.: Homology theory of lattice fermion doubling. Nucl. Phys. B 201(2), 315–332 (1982)

    Article  MathSciNet  Google Scholar 

  27. Rodrigues Jr., W.A., de Oliveira, E.C.: The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, vol. 722. Springer, Heidelberg (2007)

    Book  Google Scholar 

  28. Vaz Jr., J.: Clifford-like calculus over lattices. Adv. Appl. Clifford Algebr. 7(1), 37–70 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vaz Jr., J.: Clifford algebras and Witten’s monopole equations In: Apanasov, B., Rodrigues, U. (eds). Geometry, topology and physics: interfaces in computer science and operations research, 2nd edn, vol 2, pp. 277–300. Walter de Gruyter & Co., Berlin (1997)

  30. Wilson, W.K.: Confinement of quarks. Phys. Rev. D 10(8), 2445–2459 (1974)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank to Jayme Vaz Jr. (IMECC-UNICAMP, Brazil) for driving my attention at an earlier stage to Rabin’s approach [26] and for his research paper [29], on which the construction of spinor-like spaces, analogue to the ones constructed in Sect. 2, was considered. This paper was further developed in depth after a guest visit to School of Mathematics, University of Leeds (UK), from April 22 till April 30 2014. I would also like to thank to Vladimir V. Kisil for the fruitful discussions around this topic during these days and for his surge of interest on the feasibility of this approach. Last but not least a special acknowledgment to Artan Boriçi (University of Tirana, Albania) and to Paulo A. F. da Veiga (ICMC-USP, Brazil) for the references [3, 10, 12], and to the anonymous referees for the careful readership of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Faustino.

Additional information

Communicated by Klaus Guerlebeck.

Research supported by the fellowship 13/07590-8 of FAPESP (S.P., Brazil).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faustino, N. Solutions for the Klein–Gordon and Dirac Equations on the Lattice Based on Chebyshev Polynomials. Complex Anal. Oper. Theory 10, 379–399 (2016). https://doi.org/10.1007/s11785-015-0476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-015-0476-5

Keywords

Mathematics Subject Classification

Navigation