Skip to main content
Log in

Paracomplex Hermitean Clifford Analysis

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Substituting the complex structure by the paracomplex structure plays an important role in para-geometry and para-analysis. In this article we shall introduce the paracomplex structure into the realm of Clifford analysis and establish paracomplex Hermitean Clifford analysis by constructing a paracomplex Hermitean Dirac operator \({\mathcal {D}}\) and establishing the corresponding Cauchy integral formula. The theory of paracomplex Hermitean Clifford analysis turns out to be similar to that of complex Hermitean Clifford analysis which recently emerged as a refinement of the theory of several complex variables. It deserves to be pointed out that the introduction of a single operator \({\mathcal {D}}\) in the paracomplex setting has an advantage over the complex setting where complex Hermitean monogenic functions are described by a system of equations instead of being given as null-solution of a single Dirac operator as in the case of classic monogenic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brackx, F., Bureš, J., De Schepper, H., Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis Part I: complex structure. Complex Anal. Oper. Theory 1(3), 341–365 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brackx, F., Bureš, J., De Schepper, H., Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis Part II: Splitting of h-monogenic equations. Complex Var. Elliptic Equ. 52(10–11), 1063–1079 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brackx, F., De Knock, B., De Schepper, H., Sommen, F.: On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis. Bull. Braz. Math. Soc. 40(3), 395–416 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. In: Research Notes in Mathematics, vol. 76. Pitman (Advanced Publishing Program), Boston (1982)

  5. Brackx, F., De Schepper, H., Sommen, F.: The Hermitian Clifford analysis toolbox. Adv. Appl. Cliff. Alg. 18(3–4), 451–487 (2008)

    Article  MATH  Google Scholar 

  6. Cortes, V.: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lectures in Mathematics and Theoretical Physics, vol. 16, European Mathematical Society, Zürich (2010)

  7. Cruceanu, V., Fortuny, P., Gadea, P.: A survey on paracomplex geometry. Rocky Mountain J. Math. 26, 83–115 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Damiano, A., Eelbode, D., Sabadini, I.: Algebraic analysis of Hermitian monogenic functions. C. R. Acad. Sci. Paris Ser. I(346), 139–142 (2008)

    Article  MathSciNet  Google Scholar 

  9. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. Kluwer, Dordrecht (1992)

    Book  MATH  Google Scholar 

  10. Gilbert, J., Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  11. Gürlebeck, K., Habetha, K., Sprössig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  12. Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1997)

    MATH  Google Scholar 

  13. Khrennikov, A., Segre, G.: An introduction to hyperbolic analysis. (2005) (arXiv: math-ph/0507053v2)

  14. Kytmanov, A.: The Bochner-Martinelli Integral and its Applications. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  15. Libine, M.: Hyperbolic Cauchy integral formula for the split complex Numbers. (2007) (arXiv: math-ph/0712.0375v1)

  16. Mohaupt, T.: Special Geometry, Black Holes and Euclidean Supersymmetry. Handbook of pseudo-Riemannian geometry and supersymmetry. IRMA Lect. Math. Theor. Phys., vol. 16, pp. 149–181. Eur. Math. Soc., Zürich (2010)

  17. Price, G.B.: An Introduction to Multicomplex Spaces and Functions. Marcel Dekker, Inc., New York (1991)

    MATH  Google Scholar 

  18. Rocha-Chávez, R., Shapiro, M., Sommen, F.: Integral theorems for functions and differential forms in \({\mathbb{C}}^m\). In: Research Notes in Mathematics, vol. 428. Chapman &Hall/CRC, Boca Raton (2002)

  19. Rosenfeld, B.: Geometry of Lie groups. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1997)

    Book  Google Scholar 

  20. Sabadini, I., Sommen, F.: Hermitian Clifford analysis and resolutions. Math. Meth. Appl. Sci. 25(16–18), 1395–1413 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sommen, F., Peña-Peña, D.: A Martinelli-Bochner formula for the Hermitian Dirac equation. Math. Methods Appl. Sci. 30(9), 1049–1055 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Ren.

Additional information

Communicated by Vladimir Soucek.

This work was supported by the NNSF of China (11071230, 11371337), RFDP (20123402110068).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, G., Wang, H. & Chen, L. Paracomplex Hermitean Clifford Analysis. Complex Anal. Oper. Theory 8, 1367–1382 (2014). https://doi.org/10.1007/s11785-013-0341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-013-0341-3

Keywords

Mathematics Subject Classification (2010)

Navigation