Skip to main content
Log in

Solutions to Polynomial Generalized Bers–Vekua Equations in Clifford Analysis

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we mainly study polynomial generalized Vekua-type equation \({p(\mathcal{D})w=0}\) and polynomial generalized Bers–Vekua equation \({p(\mathcal{\underline{D}})w=0}\) defined in \({\Omega\subset\mathbb{R}^{n+1}}\) where \({\mathcal{D}}\) and \({\mathcal{\underline{D}}}\) mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including \({\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)}\) with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in \({\Omega\subset\mathbb{R}^{n+1}}\). Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in \({\Omega\subset\mathbb{R}^{n+1}}\) under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation \({p(\mathcal{\underline{D}})w=v}\) defined in \({\Omega\subset\mathbb{R}^{n+1}}\), and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation \({p(\mathcal{\underline{D}})w=v}\) defined in \({\Omega\subset\mathbb{R}^{n+1}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vekua I.N.: Generalized Analytic Functions. Pergamon Press, London (1962)

    MATH  Google Scholar 

  2. Bers, L.: Theory of Pseudo-analytic Functions. Institute of Mathematics and Mechanics, New York University, New York (1953)

  3. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. In: Research Notes in Mathematics, vol. 76. Pitman, London (1982)

  4. Delanghe, R., Sommen, F., Soucek, V.: Clifford algebra and spinor-valued functions. In: Mathematics and its Applications, vol. 53. Kluwer Academic, Dordrecht (1992)

  5. Gürlebeck K., Sprössig W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel (1990)

    Book  MATH  Google Scholar 

  6. Sprössig W.: On generalized Vekua-type problems. Adv. Appl. Clifford Alg. 11, 77–92 (2001)

    Article  Google Scholar 

  7. Zhenyuan X.: A function theory for the operator \({\mathcal{D}-\lambda}\). Complex Var. Theory Appl. 16(1), 27–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sommen F., Zhenyuan X.: Fundamental solutions for operators which are polynomials in the Dirac operator. In: Micali, A., Boudet, R., Helmstetter, J. (eds) Clifford Algebras and Their Applications in Mathematical Physics, vol. 47, pp. 313–326. Kluwer, Dordrecht (1992)

    Google Scholar 

  9. Ryan J.: Cauchy-Green type formula in Clifford analysis. Trans. Am. Math. Soc. 347, 1331–1341 (1995)

    Article  MATH  Google Scholar 

  10. Min K., Jinyuan D.: On integral representation of spherical k-regular functions in Clifford analysis. Adv. Appl. Clifford Alg. 19(1), 83–100 (2009)

    Article  MATH  Google Scholar 

  11. Gürlebeck K., Kähler U., Ryan J., Sprössig W.: Clifford analysis over unbounded Domains. Adv. Appl. Math. 19(2), 216–239 (1997)

    Article  MATH  Google Scholar 

  12. Min K.: Integral formula of isotonic functions over unbounded domain in Clifford analysis. Adv. Appl. Clifford Alg. 20(1), 57–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Min K., Jinyuan D., Daoshun W.: On generalization of Martinelli-Bochner integral formula using Clifford analysis. Adv. Appl. Clifford Alg. 20(2), 351–366 (2010)

    Article  MATH  Google Scholar 

  14. Malonek H.R., Guangbin R.: Almansi-type theorems in Clifford analysis. Math. Meth. Appl. Sci. 25, 1541–1552 (2002)

    Article  MATH  Google Scholar 

  15. Constales D., Krauβ̈har R.S.: Hilbert spaces of solutions to polynomial Dirac equations, Fourier transforms and reproducing kernel functions for cylindrical domains. Z. Anal. Anwendungen 24(3), 611–636 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Constales D., Krauβ̈har R.S.: Reproducing kernel functions of solutions to polynomial Dirac equations in the annulus of the unit ball in \({\mathbb{R}^{n}}\) and applications to boundary value problem. J. Math. Anal. Appl. 358(2), 281–293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Delanghe R., Brackx F.: Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc. 37(3), 545–576 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yafang G., Tao Q., Jinyuan D.: Structure of solutions of polynomial Dirac equations in Clifford analysis. Complex Var. Theory Appl. 49(1), 15–24 (2004)

    MathSciNet  Google Scholar 

  19. Min, K., Daoshun, W.: Solutions to polynomial Dirac equations on unbounded domains in Clifford analysis. Math. Meth. Appl. Sci (2010). doi:10.1002/mma.1368

  20. Berglez P.: Representation of pseudoanalytic functions in the space. In: Begehr, H., Nicolosi, F. (eds) Progress in Analysis, pp. 1119–1126. World Scientific Publication, Singapore (2008)

    Google Scholar 

  21. Berglez P.: On the solutions of a class of iterated generalized Bers-Vekua equations in Clifford analysis. Math. Meth. Appl. Sci. 33, 454–458 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Min K., Daoshun W.: Half Dirichlet problem for matrix functions on the unit ball in Hermitian Clifford. J. Math. Anal. Appl. 374, 442–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Ku.

Additional information

Communicated by Frank Sommen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, M., Wang, D. & Dong, L. Solutions to Polynomial Generalized Bers–Vekua Equations in Clifford Analysis. Complex Anal. Oper. Theory 6, 407–424 (2012). https://doi.org/10.1007/s11785-011-0131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-011-0131-8

Keywords

Mathematics Subject Classification (2000)

Navigation