Skip to main content
Log in

The Hermite Functions Related to Infinite Series of Generalized Convolutions and Applications

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we show that arbitrary Hermite function or appropriate linear combination of those functions is a weight-function of four explicit generalized convolutions for the Fourier cosine and sine transforms. With respect to applications, normed rings on \({L^1(\mathbb{R}^d)}\) are constructed, and sufficient and necessary conditions for the solvability and explicit solutions in \({L^1(\mathbb{R}^d)}\) of the integral equations of convolution type are provided by using the constructed convolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böttcher, A., Gohberg, I.L., Karlovich, Y., Krupnik, Y.N., Roch, S., Silbermann, B., Spitkovski, I.: Banach algebras generated by N idempotents and applications, singular integral equations and related topics. In: Operator Theory: Advances and Applications, vol. 90, pp. 19-54. Birkhäuser Verlag (1996)

  2. Bracewell, R.N.: The Hartley Transform. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  3. Bracewell R.N.: Aspects of the Hartley transform. Proc. IEEE 82, 381–387 (1994)

    Article  Google Scholar 

  4. Britvina L.E.: A class of integral transforms related to the Fourier cosine convolution. Integral Transforms Spec. Funct. 16, 379–389 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown, J.W., Churchill, R.V.: Fourier Series and Boundary Value Problems. McGraw-Hill, N. Y. (2006)

    Google Scholar 

  6. Cho P.S., Kuterdem H.G., Marks R.J. II: A spherical dose model for radio surgery plan optimization. Phys. Med. Bio. 43, 3145–3148 (1998)

    Article  Google Scholar 

  7. Feldman I., Gohberg I., Krupnik N.: Convolution equations on finite intervals and factorization of matrix functions. Integral Equ. Oper. Theory 36, 201–211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garcia-Vicente F., Delgado J.M., Peraza C.: Experimental determination of the convolution kernel for the study of the spatial response of a detector. Med. Phys. 25, 202–207 (1998)

    Article  Google Scholar 

  9. Garcia-Vicente F., Delgado J.M., Rodriguez C.: Exact analytical solution of the convolution integral equation for a general profile fitting function and Gaussian detector kernel. Phys. Med. Bio. 45, 645–650 (2000)

    Article  Google Scholar 

  10. Giang, B.T., Mau, N.V., Tuan, N.M.: Convolutions for the Fourier transforms with geometric variables and applications. Math. Nachr. (accepted)

  11. Giang B.T., Mau N.V., Tuan N.M.: Operational properties of two integral transforms of Fourier type and their convolutions. Integral Equ. Oper. Theory 65, 363–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giang, B.T., Tuan, N.M.: Generalized convolutions and the integral equations of the convolution type. Complex Var. Elliptic Equ. (2009) (99999:1, doi:10.1080/17476930902998886)

  13. Giang B.T., Tuan N.M.: Generalized convolutions for the integral transforms of Fourier type and applications. Fract. Calc. Appl. Anal. 12, 253–268 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Glaeske H.J., Tuan V.K.: Mapping properties and composition structure of multidimensional integral transform. Math. Nachr. 152, 179–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hochstadt, H.: Integral equations. Wiley, N. Y. (1973)

    MATH  Google Scholar 

  16. Kakichev, V.A.: On the convolution for integral transforms. Izv. ANBSSR Ser. Fiz. Mat. 2, 48–57 (1967) (in Russian)

    Google Scholar 

  17. Kakichev V.A., Thao N.X., Tuan V.K.: On the generalized convolutions for Fourier cosine and sine transforms. East-West J. Math. 1, 85–90 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Kirillov, A.A.: Elements of the theory of representations. Nauka, Moscow, 1972 (in Russian)

  19. Naimark, M.A.: Normed Rings. P. Noordhoff Ltd., Groningen, Netherlands (1959)

  20. Nha N.D.V., Duc D.T., Tuan V.K.: Weighted l p -norm inequalities for various convolution type transformations and their applications. Armen. J. Math. 1, 1–18 (2008)

    MathSciNet  Google Scholar 

  21. Olejniczak, K.J.: The Hartley transform. In: Poularikas, A.D. (eds.) The Transforms and Applications Handbook, The Electrical Engineering Handbook Series, part 4, 2nd edn, pp. 341–401. CRC Press with IEEE Press, Florida (2000)

  22. Rösler M.: Generalized Hermite polynomials and the heat equations for Dunkl operator. Comm. Math. Phys. 192, 519–542 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saitoh S.: The Weierstrass transform and an isometry in the heat equation. Appl. Anal. 16, 1–6 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Saitoh S.: One approach to some general integral transforms and its applications. Integral Transform. Spec. Funct. 3, 49–84 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sawano Y., Fujiwara H., Saitoh S.: Real inversion formulas of the Laplace transform on weighted function spaces. Complex Anal. Oper. Theory 2, 511–521 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stein, E.M., Shakarchi, R.: Princeton Lectures in Analysis: Fourier Analysis, An Introduction. Princeton University Press, Princeton and Oxford (2007)

  27. Thao N.X., Khoa N.M.: On the generalized convolution with a weight function for the Fourier sine and cosine transforms. Integral Transforms Spec. Funct. 17, 673–685 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thao N.X., Tuan V.K., Hong N.T.: Generalized convolution transforms and Toeplitz plus Hankel integral equations. Frac. Calc. App. Anal. 11, 153–174 (2008)

    MATH  Google Scholar 

  29. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Chelsea, New York (1986)

    Google Scholar 

  30. Tomovski Z., Tuan V.K.: On Fourier transforms and summation formulas of generalized Mathieu series. Math. Sci. Res. J. 13, 1–10 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Tuan N.M., Tuan P.D.: Generalized convolutions relative to the Hartley transforms with applications. Sci. Math. Jpn. 70, 77–89 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Yakubovich, S.B., Luchko, Y.: The Hypergeometric Approach to Integral Transforms and Convolutions. Mathematics and its Applications, vol. 287. Kluwer Academic Publishers, Dordrecht/Boston/London (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Minh Tuan.

Additional information

Communicated by Saburou Saitoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuan, N.M., Huyen, N.T.T. The Hermite Functions Related to Infinite Series of Generalized Convolutions and Applications. Complex Anal. Oper. Theory 6, 219–236 (2012). https://doi.org/10.1007/s11785-010-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-010-0053-x

Keywords

Mathematics Subject Classification (2000)

Navigation