Skip to main content
Log in

On the strong convergence of the proximal point algorithm with an application to Hammerstein euations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Let E be a real normed space. A new notion of quasi-boundedness for operators \(A:E\rightarrow 2^E\) is introduced and the following general important result for accretive operators is proved: an accretive operator with zero in the interior of its domain is quasi-bounded. Using this result, a new strong convergence theorem for approximating a zero of an m-accretive operator is proved in a uniformly smooth real Banach space. This result complements the celebrated proximal point algorithm for approximating solutions of \(0\in Au\) in a real Hilbert space where A is a maximal monotone operator. Furthermore, as an application of our theorem, a new strong convergence theorem for approximating a solution of a Hammerstein equation is proved. Finally, several numerical experiments are presented to illustrate the strong convergence of the sequence generated by our algorithm and the results obtained are compared with those obtained using some recent important algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Analysis and control of nonlinear infinite dimensional systems, Mathematics in science and engineering vol. 190, AP INC, ISBN 0-12-078145-X, Boston, San Diego, New York, London, Sydney, Tokyo, Toronto

  2. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Browder, F.E.: Nonlinear elliptic boundary value problems. Bull. Am. Math. Soc. 69, 862–874 (1963)

    MathSciNet  MATH  Google Scholar 

  4. Brezis, H., Browder, F.E.: Some new results about Hammerstein equations. Bull. Am. Math. Soc. 80, 567–572 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Brezis, H., Browder, F.E.: Existence theorems for nonlinear integral equations of Hammerstein type. Bull. Am. Math. Soc. 81, 73–78 (1975)

    MathSciNet  MATH  Google Scholar 

  6. Browder, F.E., Gupta, P.: Monotone operators and nonlinear integral equations of Hammerstein type. Bull. Am. Math. Soc. 75, 1347–1353 (1969)

    MathSciNet  MATH  Google Scholar 

  7. Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces. J. Funct. Anal. 18, 15–26 (1975)

    MathSciNet  MATH  Google Scholar 

  8. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Chepanovich, RSh: Nonlinear Hammerstein equations and fixed points. Publ. Inst. Math. (Beograd) N. S. 35, 119–123 (1984)

    MathSciNet  Google Scholar 

  10. Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear iterations, vol. 1965 of Lectures Notes in Mathematics. Springer, London (2009)

    Google Scholar 

  11. Chidume, C.E.: Strong convergence theorems for bounded accretive operators in uniformly smooth Banach spaces. Contemp. Math. (Amer. Math. Soc.) 659, 31–41 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Chidume, C.E.: Iterative solution of nonlinear equations of monotone-type in Banach spaces. Bull. Aust. Math. Soc. 42(1), 21–31 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Chidume, C.E.: An approximation method for monotone Lipschitzian operators in Hilbert spaces. J. Aus. Math. Soc. Ser. A-Pure Math. Stat. 41:1, 59–63 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Chidume, C.E., Chidume, C.O.: Convergence theorems for zeros of generalized Lipschitz generalized PHI-quasi-accretive operators. Proc. Am. Math. Soc. 134(1), 243–251 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Chidume, C.E., Abbas, M., Bashir, A.: Convergence of the Mann iteration algorithm for class of Pseudocontractive mappings. Appl. Math. Comput. 194(1), 1–6 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Chidume, C.E., Shehu, Y.: Iterative approximation of solutions of equations of Hammerstein type in certain Banach spaces. Appl. Math. Comput. 219, 5657–5667 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Chidume, C.E., Shehu, Y.: Approximation of solutions of generalized equations of Hammerstein type. Comput. Math. Appl. 63, 966–974 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Chidume, C.E., Idu, K.O.: Approximation of zeros of bounded maximal monotone maps, solutions of Hammerstein integral equations and convex minimization problems. Fixed Point Theory Appl. (2016). https://doi.org/10.1186/s13663-016-0582-8

    Article  MATH  Google Scholar 

  19. Chidume, C.E., Ofoedu, E.U.: Solution of nonlinear integral equations of Hammerstein type. Nonlinear Anal. 74, 4293–4299 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Chidume, C.E., Zegeye, H.: Approximation of solutions nonlinear equations of Hammerstein type in Hilbert space. Proc. Am. Math. Soc. 133, 851–858 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Chidume, C.E., Zegeye, H.: Iterative approximation of solutions of nonlinear equation of Hammerstein-type. Abstr. Appl. Anal. 6, 353–367 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Chidume, C.E., Zegeye, H.: Approximation os solutions of nonlinear equations of monotone and Hammerstein-type. Appl. Anal. 82(8), 747–758 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Chidume, C.E., Nnakwe, M.O., Adamu, A.A.: A strong convergence theorem for generalized-\(\Phi \)-strongly monotone maps, with applications. Fixed Point Theory Appl. (2019). https://doi.org/10.1186/s13663-019-0660-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Chidume, C.E., Adamu, A., Chinwendu, L.O.: Approximation of solutions of Hammerstein equations with monotone mappings in real Banach spaces. Carpathian J. Math. 35(3), 305–316 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Chidume, C.E., Bello, A.U.: An iterative algorithm for approximating solutions of Hammerstein equations with monotone maps in Banach spaces. Appl. Math. Comput. 313, 408–417 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Chidume, C.E., Djitte, N.: An iterative method for solving nonlinear integral equations of Hammerstein type. Appl. Math. Comput. 219, 5613–5621 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Chidume, C.E., Djitte, N.: Iterative approximation of solutions of nonlinear equations of Hammerstein-type. Nonlinear Anal. 70, 4086–4092 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Chidume, C.E., Djitte, N.: Approximation of solutions of Hammerstein equations with bounded strongly accretive nonlinear operator. Nonlinear Anal. 70, 4071–4078 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Chidume, C.E., Adamu, A., Chinwendu, L.O.: Iterative algorithms for solutions of Hammerstein equations in real Banach spaces. Fixed Point Theory Appl. (2020). https://doi.org/10.1186/s13663-020-0670-7

    Article  MathSciNet  Google Scholar 

  30. Cioranescu, I.: Geometry of Banach Spaces, Duality Mapping and nonlinear problems. Kluwer Academic Publishers, Amsterdam (1990)

    MATH  Google Scholar 

  31. De Figueiredo, D.G., Gupta, C.P.: On the variational methods for the existence of solutions to nonlinear equations of Hammerstein type. Bull. Am. Math. Soc. 40, 470–476 (1973)

    MathSciNet  Google Scholar 

  32. Djitte, N., Sene, M.: An iterative algorithm for approximating solutions of Hammerstein integral equations. Numer. Funct. Anal. Optim. 34(12), 1299–1316 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Fitzpatrick, P.M., Hess, P., Kato, T.: Local boundedness of monotone type operators. Proc. Jpn. Acad. 48, 275–277 (1972)

    MathSciNet  MATH  Google Scholar 

  34. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29(2), 403–419 (1991). https://doi.org/10.1137/0329022

    Article  MathSciNet  MATH  Google Scholar 

  35. Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938–945 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Krasnoselskii, M.A.: Solution of equations involving adjoint operators by successive approximations. Uspekhi Mat. Nauk 15(3 (93)), 161–165 (1960)

    MathSciNet  Google Scholar 

  37. Kryanev, V.A.: The solution of incorrectly posed problems by methods of successive approximations. Dokl. Akad. Nauk SSSR 210, 20–22 (1973)

    MathSciNet  Google Scholar 

  38. Kryanev, V.A.: The solution of incorrectly posed problems by methods of successive approximations. Sov. Math. Dokl. 14, 673–676 (1973)

    Google Scholar 

  39. Lehdili, N., Moudafi, A.: Combining the proximal algorithm and Tikhonov regularization. Optimization 37(3), 239–252 (1996). https://doi.org/10.1080/02331939608844217

    Article  MathSciNet  MATH  Google Scholar 

  40. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II: Function Spaces, Ergebnisse Math. Grenzgebiete Bd. 97. Springer (1979)

  41. Martinet, B.: Regularisation d’inedquations variationelles par approximations successives. Rev. Francaise Inf. Rech. Oper. 154–159 (1970)

  42. Martin, R.H.: A global existence theorem for autonomous differential equations in Banach spaces. Proc. Am. Math. Soc. 26, 307–314 (1970)

    MathSciNet  MATH  Google Scholar 

  43. Minty, G.J.: Monotone (nonlinear) operators in hilbert space. Duke Math. J. 29(4), 341–346 (1962)

    MathSciNet  MATH  Google Scholar 

  44. Minjibir, M.S., Mohammed, I.: Iterative algorithms for solutions of Hammerstein integral inclusions. Appl. Math. Comput. 320, 389–399 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr. J. Math. 32, 44–58 (1979)

    MathSciNet  MATH  Google Scholar 

  46. Ofoedu, E.U., Onyi, C.E.: New implicit and explicit approximation methods for solutions of integral equations of Hammerstein type. Appl. Math. Comput. 246, 628–637 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Ofoedu, E.U., Malonza, D.M.: Hybrid approximation of solutions of nonlinear operator equations and application to equation of Hammerstein type. Appl. Math. Comput. 13, 6019–6030 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Pascali, D., Sburlan, S.: Nonlinear Mappings of Monotone Type. Editura Academiei, Bucharest (1978)

    MATH  Google Scholar 

  49. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31(1–3), 22–44 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Reich, S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26, 378–395 (1977)

    MathSciNet  MATH  Google Scholar 

  51. Reich, S.: An iterative procedure for constructing zeros of accretive sets in Banach spaces. Nonlinear Anal. 2, 85–92 (1978)

    MathSciNet  MATH  Google Scholar 

  52. Reich, S.: Constructive Techniques for Accretive and Monotone Operators in “Applied Nonlinear Analysis”, pp. 335–345. Academic Press, New York (1979)

    Google Scholar 

  53. Reem, D., Reich, S.: Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization. Rend. Circ. Mat. Palermo 67, 337–371 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  55. Shehu, Y.: Strong convergence theorem for integral equations of Hammerstein type in Hilbert spaces. Appl. Math. Comput. 231, 140–147 (2014)

    MathSciNet  MATH  Google Scholar 

  56. Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Progr. Ser. A 87, 189–202 (2000)

    MathSciNet  MATH  Google Scholar 

  57. Xu, H.K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36(1), 115–125 (2006). 1991

    MathSciNet  MATH  Google Scholar 

  58. Xu, H.K.: Strong convergence of an iterative method for nonexpansive and accretive operators. J. Math. Anal. Appl. 314, 631–643 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Qin, X., Su, Y.: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. 329, 415–424 (2007)

    MathSciNet  MATH  Google Scholar 

  60. Xu, Z.B., Roach, G.F.: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces. J. Math. Anal. Appl. 157, 189–210 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their comments and suggestions which helped in the to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Chidume.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported from ACBF Research Grant Funds to AUST.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidume, C.E., Adamu, A., Minjibir, M.S. et al. On the strong convergence of the proximal point algorithm with an application to Hammerstein euations. J. Fixed Point Theory Appl. 22, 61 (2020). https://doi.org/10.1007/s11784-020-00793-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-020-00793-6

Keywords

Mathematical Subject Classification

Navigation