Skip to main content
Log in

Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions on a compact interval. We show that the solution set for our problem is nonempty, compact and moreover a \(R_{\delta }\)-set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hernández, E., Pierri, M., O’Regan, D.: On abstract differential equations with non instantaneous impulses. Topol. Methods Nonlinear Anal. 46, 1067–1085 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Abbas, S., Benchohra, M., Darwish, M.A.: New stability results for partial fractional differential inclusions with not instantaneous impulses. Frac. Calc. Appl. Anal. 18, 172–191 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Abbas, S., Benchohra, M.: Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257, 190–198 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Wang, J., Fečkan, M.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46, 915–933 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Wang, J., Fečkan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediter. J. Math 14(46), 1–21 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Wang, J.: Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. 73, 157–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agarwal, R., O’Regan, D., Hristova, S.: Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses. Appl. Math. Comput. 298, 45–56 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Agarwal, R., Hristova, S., O’Regan, D.: Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions. J. Franklin Inst. 354, 3097–3119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Agarwal, R., O’Regan, D., Hristova, S.: Non-instantaneous impulses in Caputo fractional differential equations. Frac. Calc. Appl. Anal. 20, 595–622 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Wang, J., Ibrahim, A.G., O’Regan, D.: Nonemptyness and compactness of the solution set for fractional semi linear evolution inclusions with non-instantaneous impulses. Submitted to Electron. J. Differ. Equ. (2017)

  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  13. Górniewicz, L.: Homological methods in fixed point theory of multivalued maps. Dissert. Math. 129, 1–71 (1976)

    MATH  Google Scholar 

  14. Gabor, G., Grudzka, A.: Structure of the solution set to impulsive functional differential inclusions on the half-line. Nonlinear Differ. Equ. Appl. 19, 609–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aubin, J.P., Frankoeska, H.: Set-valued Analysis. Birkhäuser, Boston (1990)

    Google Scholar 

  16. Kamenskii, M., Obukhowskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin (2001)

    Book  MATH  Google Scholar 

  17. Hyman, D.H.: On decreasing sequence of compact absolute retract. Fund. Math. 64, 91–97 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Z., Zeng, B.: Existence and conrollability for fractional evolution inclusions of Clark’s subdifferential type. Appl. Math. Comput. 257, 178–189 (2015)

    MathSciNet  Google Scholar 

  19. Bothe, D.: Multivalued perturbation of \(m\)-accerative differential inclusions. Israel J. Math. 108, 109–138 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Djebali, S., Górniewicz, L., Ouahab, A.: Solution Sets for Differential Equations and Inclusions. De Gruyter Series in Nonlinear Analysis and Applications, vol. 18. Walter De Gruyter, Berlin, Germany (2012)

    MATH  Google Scholar 

  21. Górniewicz, L.: On the solution sets of differential inclusions. J. Math. Anal. Appl. 113, 235–244 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for carefully reading the manuscript and for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

The authors acknowledge the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Unite Foundation of Guizhou Province ([2015]7640), Graduate ZDKC ([2015]003), and Deanship of Scientific Research of King Faisal University of Saudi Arabia (No. 170060).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ibrahim, A.G. & O’Regan, D. Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions. J. Fixed Point Theory Appl. 20, 59 (2018). https://doi.org/10.1007/s11784-018-0534-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0534-5

Mathematics Subject Classification

Keywords

Navigation