Skip to main content
Log in

Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a proximal split feasibility algorithm with an additional inertial extrapolation term for solving a proximal split feasibility problem under weaker conditions on the step sizes. The two convex and lower semi continuous objective functions are assumed to be non-smooth. Some applications to split inclusion problem and split equilibrium problem are given. We demonstrate the efficiency of the proposed algorithm with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attouch, H., Goudon, X., Redont, P.: The heavy ball with friction. I. The continuous dynamical system. Commun. Contemp. Math. 2(1), 1–34 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Attouch, H., Czarnecki, M.O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 179(1), 278–310 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24, 232–256 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12(1–3), 31–40 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4, 1–9 (1978)

    MATH  MathSciNet  Google Scholar 

  7. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bello Cruz, J.Y., Shehu, Y.: An iterative method for split inclusion problems without prior knowledge of operator norms. J. Fixed Point Theory Appl. doi:10.1007/s11784-016-0387-8 (in press)

  10. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)

    MATH  MathSciNet  Google Scholar 

  11. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion. Appl. Math. Comput. 256, 472–487 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)

    MATH  MathSciNet  Google Scholar 

  13. Bot, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Alg. 71, 519–540 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. Br\(\acute{e}\)zis, H., Lions, P.L.: Produits infinis de resolvantes. Isr. J. Math. 29, 329–345 (1978)

  15. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20(1), 103–120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MATH  MathSciNet  Google Scholar 

  18. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2–4), 221–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward–backward splitting. SIAM J. Optim. 7, 421–444 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8, 2239–2267 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  22. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)

    MATH  MathSciNet  Google Scholar 

  23. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MATH  MathSciNet  Google Scholar 

  24. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dang, Y., Gao, Y., Han, Y.: A perturbed projection algorithm with inertial technique for split feasibility problem. J. Appl. Math. Article ID 207323, 10 (2012)

  26. Dunn, J.C.: Convexity, monotonicity, and gradient processes in Hilbert space. J. Math. Anal. Appl. 53, 145–158 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Marcel Dekker, New York (1984)

  28. Gibali, A., Moudafi, A.: From implicit convex feasibility to convex minimization. Trans. Math. Program. Appl. 5, 60–80 (2017)

    Google Scholar 

  29. G\(\ddot{u}\)ler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control. Optim. 29, 403-419 (1991)

  30. Hendrickx, J.M., Olshevsky, A.: Matrix \(P\)-norms are NP-hard to approximate if \(P\ne 1,2,\infty \). SIAM. J. Matrix Anal. Appl. 31, 2802–2812 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lopez, G., Martin-Marquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mainge, P.-E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1), 223–236 (2008)

  35. Mainge, P.-E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 344, 876–887 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Martinet, B.: Regularisation dinequations variationnelles par approximations successives. Rev. Francaise Informat. Recherche. Operationnelle 4, 154–158 (1970)

    MATH  Google Scholar 

  37. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Moudafi, A., Thera, M.: Proximal and dynamical approaches to equilibrium problems. In: Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187–201. Springer (1999)

  39. Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8(7), 2099–2110 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vision 53, 171–181 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  41. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  42. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Podilchuk, C.I., Mammone, R.J.: Image recovery by convex projections using a least-squares constraint. J. Opt. Soc. Am. A 7, 517–521 (1990)

    Article  Google Scholar 

  44. Polyak, B.T.: Some methods of speeding up the convergence of iterarive methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    Google Scholar 

  45. Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21(5), 1655–1665 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  47. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  48. Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin (1988)

    MATH  Google Scholar 

  49. Shehu, Y., Cai, G., Iyiola, O.S.: Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl. 2015, 123 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  50. Shehu, Y., Ogbuisi, F.U.: An iterative method for solving split monotone variational inclusion and fixed point problems. RACSAM 110, 503–518 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  51. Shehu, Y., Ogbuisi, F.U.: Convergence analysis for proximal split feasibility problems and fixed point problems. J. Appl. Math. Comp. 48, 221–239 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  52. Takahashi, W., Wong, N.C., Yao, J.C.: Two generalized strong convergence theorems of Halperns type in Hilbert spaces and applications. Taiwan. J. Math. 16, 1151–1172 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  53. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38, 431–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Wang, F., Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Global Optim. 54, 485–491 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  55. Xu, H.-K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22(6), 2021–2034 (2006)

    Article  MATH  Google Scholar 

  56. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20(4), 1261–1266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  57. Yang, Q., Zhao, J.: Generalized KM theorems and their applications. Inverse Probl. 22(3), 833–844 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  58. Yao, Y., Jigang, W., Liou, Y.-C.: Regularized methods for the split feasibility problem. Abstr. Appl. Anal. Article ID 140679, 13 (2012)

  59. Yao, Z., Cho, S.Y., Kang, S.M., Zhu, L.-J.: A regularized algorithm for the proximal split feasibility problem. Abstr. Appl. Anal. Article ID 894272, 6 (2014)

  60. Yao, Y., Yao, Z., Abdou, A.A., Cho, Y.J.: Self-adaptive algorithms for proximal split feasibility problems and strong convergence analysis. Fixed Point Theory Appl. 2015, 205 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  61. Youla, D.: On deterministic convergence of iterations of related projection mappings. J. Vis. Commun. Image Represent 1, 12–20 (1990)

    Article  Google Scholar 

  62. Zegeye, H., Shahzad, N.: Strong convergence theorems for a common zero of a finite family of maccretive mappings. Nonlinear Anal. 66, 1161–1169 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  63. Zegeye, H., Shahzad, N.: Solutions of variational inequality problems in the set of fixed points of pseudocontractive mappings. Carpathian J. Math. 30, 257–265 (2014)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was carried out when the First Author was an Alexander von Humboldt Postdoctoral Fellow at the Institute of Mathematics, University of Wurzburg, Germany. He is grateful to the Alexander von Humboldt Foundation, Bonn, for the fellowship and the Institute of Mathematics, Julius Maximilian University of Wurzburg, Germany for the hospitality and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Additional information

Y. Shehu is currently an Alexander von Humboldt Postdoctoral Fellow at the Institute of Mathematics, University of Wurzburg, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, Y., Iyiola, O.S. Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method. J. Fixed Point Theory Appl. 19, 2483–2510 (2017). https://doi.org/10.1007/s11784-017-0435-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-017-0435-z

Keywords

Mathematics Subject Classification

Navigation