Skip to main content
Log in

Nonlinear extensions of the Perron–Frobenius theorem and the Krein–Rutman theorem

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

A unification version of the Perron–Frobenius theorem and the Krein–Rutman theorem for increasing, positively 1-homogeneous, compact mappings is given on ordered Banach spaces without monotonic norm. A Collatz-type minimax characterization of the positive eigenvalue with positive eigenvector is obtained. The power method in computing the largest eigenpair is also extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anane A.: Simplicité et isolation de la primière valeur du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305, 725–728 (1987)

    MATH  MathSciNet  Google Scholar 

  3. Berman A., Plemmom R.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)

    MATH  Google Scholar 

  4. E. di Benedetto, \({C^{1+\alpha}}\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983), 827–850.

  5. Chang K. C.: A nonlinear Krein Rutman theorem. J. Syst. Sci. Complex. 22, 542–554 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chang K. C., Pearson K., Zhang T.: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang K.C., Pearson K., Zhang T.: Primitivity, the convergence of the NQZ method and the largest eigenvalue for nonnegative tensors. SIAM J. Matrix Anal. Appl. 32, 806–819 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Collatz L.: Einschliessungssatz für die charakteristischen Zahlen von Matrizen. Math. Z. 48, 221–226 (1942)

    Article  MathSciNet  Google Scholar 

  9. Deimling K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)

    Book  MATH  Google Scholar 

  10. de Pagter B.: Irreducible compact operators. Math. Z. 192, 149–153 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin, 1983.

  12. Z.-Z. Guan, Lectures on Functional Analysis. High Education Press, Beijing, 1958 (in Chinese).

  13. Kohlberg E.: The Perron-Frobenius theorem without additivity. J.Math. Econom. 10, 299–303 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krause U.: Perron’s stability theorem for nonlinear mappings. J.Math. Econom. 15, 275–282 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. G. Kreĭin and M.A.Rutman, Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat. Nauk (N. S.) 3 (1948), 3–95 (in Russian); English Transl.: Amer. Math. Soc. Transl. 1950 (1950), 1–128.

  16. Krasnosel’skĭ M. A.: Positive Solutions of Operator Equations. Nordhoff, Groningen (1964)

    Google Scholar 

  17. L.-H. Lim, Singular values and eigenvalues of tensors: A variatianal approach. In: Proc. 1st IEEE, International Workshop on Computational Advances of Multi-Tensor Adapting Processing, 2005, 129–132.

  18. Mahadevan R.: A note on a non-linear Krein-Rutman theorem. Nonlinear Anal. 67, 3084–3090 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mallet-Paret J., Nussbaum R. D.: Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete Contin. Dyn. Syst. 8, 519–562 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Morishima M.: Equilibrium, Stability and Growth: A Multi-Sectoral Analysis. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  21. Ng M., Qi L., Zhou G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)

    Article  MathSciNet  Google Scholar 

  22. Nikaidô H.: Convex Structures and Economic Theory. Academic Press, New York (1968)

    MATH  Google Scholar 

  23. R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Kreĭn-Rutman theorem. In: Fixed Point Theory (Sherbrooke, Que., 1980) Lecture Notes in Math. 866, 1981, 309–330.

  24. R. D. Nussbaum, Hilbert’s projective metric and iterated nonlinear maps. Mem. Amer. Math. Soc. 75 (1988), iv+173.

  25. R. D. Nussbaum, Iterated nonlinear maps and Hilbert’s projective metric. II. Mem. Amer. Math. Soc. 79 (1989), iv+118.

  26. R. D. Nussbaum, Eigenvectors of order-preserving linear operators. J. Lond. Math. Soc. (2) 58 (1998), 480–496.

  27. Ogiwara T.: Nonlinear Perron-Frobenius problem on an ordered Banach space. Jpn. J. Math. 21, 43–103 (1995)

    MATH  MathSciNet  Google Scholar 

  28. Qi L.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302–1324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Rabinowitz, Théorie du degré topologique et applications á des problémes aux limittes non linéaires. Laboratoire Analyse et Numerique, Univ. Paris VI, 1975.

  30. Sawashima I.: On spectral properties of some positive operators. Natur.Sci. Rep. Ochanomizu Univ. 15, 53–64 (1965)

    MathSciNet  Google Scholar 

  31. Schaefer H. H.: Banach Lattices and Positive Operators. Springer-Verlag, Berlin (1974)

    Book  MATH  Google Scholar 

  32. Schaefer H. H.: Some spectral properties of positive linear operators. Pascific J. Math. 10, 1009–1019 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  33. Song Y., Qi L.: Positive eigenvalue-eigenvector of nonlinear positive mappings. Front. Math. China 9, 181–199 (2014)

    Article  MathSciNet  Google Scholar 

  34. Sweers G.: Strong positivity in \({C(\overline{\Omega})}\) for elliptic systems. Math. Z. 209, 251–271 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51, 126–150 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vázquez J. L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zeidler E.: Nonlinear Functional Analysis and Its Applications. Springer-Verlag, New York (1986)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Chang.

Additional information

To Professor Haïm Brezis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, K.C. Nonlinear extensions of the Perron–Frobenius theorem and the Krein–Rutman theorem. J. Fixed Point Theory Appl. 15, 433–457 (2014). https://doi.org/10.1007/s11784-014-0191-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-014-0191-2

Mathematics Subject Classification

Keywords

Navigation