Skip to main content
Log in

Some questions related to modeling in cellular biology

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Several years ago, we decided to switch our main focus of interest toward the field of modeling cellular biology. Several reasons motivated this move: first cellular and molecular biology offer a fantastic new source of physical and mathematical problems. Second, to understand the function of cellular microdomains, modeling and computer simulations are necessary tools to organize and structure experimental observations. We review here some questions we have started to address.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araya R., Nikolenko V., Eisenthal K.B., Yuste R.: Sodium channels amplify spine potentials. Proc. Nat. Acad. Sci. USA 104, 12347–12352 (2007)

    Article  Google Scholar 

  2. Bartfeld E., Grinvald A.: Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc. Nat. Acad. Sci. USA 89, 11905–11909 (1992)

    Article  Google Scholar 

  3. Biess A., Korkotian E., Holcman D.: Diffusion in a dendritic spine: The role of geometry. Phys. Rev. E 76, 021922 (2007)

    Article  Google Scholar 

  4. Bishop K.M., Rubenstein J.L.R., O’Leary D.D.M.: Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. J. Neurosci. 22, 7627–7638 (2002)

    Google Scholar 

  5. Bourne J., Harris K.M.: Do thin spines learn to be mushroom spines that remember?. Current Opinion Neurobiol. 17, 381–386 (2007)

    Article  Google Scholar 

  6. A. Cheviakov, M. J. Ward and R. Straube, An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere. SIAM Multiscale Modeling Simulation (2009), to appear.

  7. Choquet D., Triller A.: The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 4, 251–265 (2003)

    Article  Google Scholar 

  8. Dinh A.T., Pangarkar C., Theofanous T., Mitragotri S.: Understanding intracellular transport processes pertinent to synthetic gene delivery via stochastic simulations and sensitivity analyses. Biophys. J. 92, 831–846 (2007)

    Article  Google Scholar 

  9. D. Fresche and D. Holcman, Should synpatic transmission be reliable. Preprint, 2009.

  10. D. Fresche, A. Singer, Z. Schuss and D. Holcman, Complex dynamics in dendritic spines. Preprint.

  11. Higley M.J., Sabatini B.L.: Calcium signaling in dendrites and spines: practical and functional considerations. Neuron. 59, 902–913 (2008)

    Article  Google Scholar 

  12. Holcman D., Kasatkin V., Prochiantz A.: Formation of morphogenetic gradients and boundaries during early development. J. Theoret. Biol. 249, 503–517 (2007)

    Article  Google Scholar 

  13. D. Holcman, E. Korkotian and M. Segal, Calcium dynamics in dendritic spines, modeling and experiments. Cell Calcium 37 (2005), 467–475.

    Article  Google Scholar 

  14. D. Holcman and I. Kupka, The probability of an encounter of two Brownian particles before escape. J. Phys. A 42 (2009), art. ID 315210.

    Google Scholar 

  15. D. Holcman and I. Kupka, Mean escape time for a polymer inside a microdomain. Preprint.

  16. Holcman D., Schuss Z.: Escape through a small opening: receptor trafficking in a synaptic membrane. J. Statist. Phys. 117, 191–230 (2004)

    Article  MathSciNet  Google Scholar 

  17. Holcman D., Schuss Z.: Diffusion through a cluster of small windows and flux regulation in microdomains. Phys. Lett. A 372, 3768–3772 (2008)

    Article  Google Scholar 

  18. Holcman D., Schuss Z.: Diffusion escape through a cluster of small absorbing windows. J. Phys. A 41, 155001 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kasatkin V., Prochiantz A., Holcman B.: Morphogenetic gradients and the stability of boundaries between neighboring morphogenetic regions. Bull. Math. Biol. 70, 156–178 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kolokolnikov T., Titcombe M., Ward M.J.: Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps. Eur. J. Appl. Math. 16, 161–200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Korkotian E., Holcman D., Segal M.: Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons. Eur. J. Neurosci. 20, 2649–2663 (2004)

    Article  Google Scholar 

  22. Lagache T., Dauty E., Holcman D.: Quantitative analysis of virus and plasmid trafficking in cells. Phys. Rev. E 79, 011921 (2009)

    Article  Google Scholar 

  23. T. Lagache, E. Dauty and D. Holcman, Physical principles and models describing intracellular virus particle dynamics. Current Opinion Microbiol. 12 (2009).

  24. Meinhardt H.: A model of pattern formation in insect embryogenesis. J. Cell Sci. 23, 177–139 (1977)

    Google Scholar 

  25. Meinhardt H.: Complex pattern formation by a self-destabilization of established patterns: chemotactic orientation and phyllotaxis as examples. C. R. Biol. 326, 223–237 (2003)

    Article  Google Scholar 

  26. Meinhardt H., Gierer A.: Generation and regeneration of sequences of structures during morphogenesis. J. Theoret. Biol. 85, 429–450 (1980)

    Article  MathSciNet  Google Scholar 

  27. Minsky A.: Abstract structural aspects of DNA repair: the role of restricted diffusion. Mol. Microbiol. 50, 367–376 (2003)

    Article  Google Scholar 

  28. Monk N.A.: Restricted-range gradients and travelling fronts in a model of juxtacrine cell relay. Bull. Math. Biol. 60, 901–918 (1998)

    Article  MATH  Google Scholar 

  29. C. Nüsslein-Volhard, Coming to Life: How Genes Drive Development, Kales Press, 2006.

  30. Schuss Z.: Theory and Applications of Stochastic Differential Equations. Wiley, New York (1980)

    MATH  Google Scholar 

  31. Schuss Z., Singer A., Holcman D.: The narrow escape problem for diffusion in cellular microdomains. Proc. Nat. Acad. Sci. USA 104, 16098–16103 (2007)

    Article  Google Scholar 

  32. Segal M.: Dendritic spines and long-term plasticity. Nat. Rev. Neurosci. 6, 277–284 (277))

    Article  Google Scholar 

  33. Singer A., Schuss Z.: Activation through a narrow opening. Phys. Rev. E 74, 020103R (2006)

    Article  Google Scholar 

  34. Singer A., Schuss Z., Holcman D.: Narrow escape and leakage of Brownian particles. Phys. Rev. E 78, 051111 (2008)

    Article  MathSciNet  Google Scholar 

  35. Singer A., Schuss Z., Holcman D., Eisenberg B.: Narrow escape I. J. Statist. Phys. 122, 437–463 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Singer A., Schuss Z., Holcman D.: Narrow escape II. J. Statist. Phys. 122, 465–489 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Singer A., Schuss Z., Holcman D.: Narrow escape III. J. Statist. Phys. 122, 491–509 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Karlin S., Taylor H.: A Second Course in Stochastic Processes. Academic Press, New York (1981)

    MATH  Google Scholar 

  39. Turing A.M.: The chemical basis of morphogenesis. Philos. Trans. B 237, 37–72 (1952)

    Article  Google Scholar 

  40. S. Pillay, M. J. Ward, A. Peirce and T. Kolokolnikov, An asymptotic analysis of the mean first passage time for narrow escape problems. SIAM Multiscale Modeling Simulation (2010), to appear.

  41. Ward M.J., Henshaw W.D., Keller J.B.: Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J. Appl. Math. 53, 799–828 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  42. Ward M.J., Keller J.B.: Strong localized perturbations of eigenvalue problems. SIAM J. Appl. Math. 53, 770–798 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  43. Ward M.J., Van De Velde E.: The onset of thermal runaway in partially insulated or cooled reactors. IMA J. Appl. Math. 48, 53–85 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wolpert L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969)

    Article  Google Scholar 

  45. Wolpert L.: One hundred years of positional information. Trends Genet. 12, 359–364 (1996)

    Article  Google Scholar 

  46. Shmuel A., Grinvald A.: Coexistence of linear zones and pinwheels within orientation maps in cat visual cortex. Proc. Nat. Acad. Sci. USA 97, 5568–5573 (2000)

    Article  Google Scholar 

  47. Wyman C., Kanaar R.: DNA double-strand break repair: all’s well that ends well. Ann. Rev. Genet. 40, 363–383 (2006)

    Article  Google Scholar 

  48. A. Ziskind, Y. Shaul and D. Holcman, Nuclear organization constraints dsDNA repairs by NHEJ, a modeling insight. Preprint.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Holcman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holcman, D., Kupka, I. Some questions related to modeling in cellular biology. J. Fixed Point Theory Appl. 7, 67–83 (2010). https://doi.org/10.1007/s11784-010-0012-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-010-0012-1

Mathematics Subject Classification (2010)

Keywords

Navigation