Skip to main content
Log in

Impact of historical pattern of human activities and natural environment on wetland in Heilongjiang River Basin

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Mid and high latitude wetlands are becoming fragmented and losing ecosystem functions at a much faster rate than many other ecosystems. This is due in part to increasing human activities and climate change. In this study, we analyzed wetland distribution and spatial pattern changes for the Heilongjiang River Basin over the past 100 yr. We identified the driving factors and quantified the relative importance of each factor based on landscape pattern metrics and machine learning algorithms. Our results show that wetlands have been fragmented into smaller and regular patches with dominant factors that varied at different periods. Geographic features play the most important role in patterns of wetland change for the entire basin (with 50%–60% of relative importance). Human activities are more important than climate change at the century scale, but less important when magnified at the decadal scale. In the early 1900s, human activities were relatively low and localized and remained that way in the subsequent decades. Thus, the effect of human activities on wetland area of the entire basin is weaker when examined at the magnified decadal scale. The results also show that human activities are more important on the Chinese side of the Heilongjiang River Basin, in the Zeya-Bureya Plain on the Russian side, and at lower altitudes (0–100 m). Revealing the spatial and temporal processes and driving factors over the past 100 yr helps researchers and policymakers understand and anticipate wetland change and design effective conservation and restoration policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali H, Modi P, Mishra V (2019). Increased flood risk in Indian subcontinent under the warming climate. Weather and Climate Extremes, 25: 100212

    Article  Google Scholar 

  • An S Q, Li H, Guan B H, Zhou C F, Wang Z S, Deng Z F, Zhi Y B, Liu Y H, Xu C, Fang S B, et al. (2007). China’s natural wetlands: past problems, current status, and future challenges. AMBIO: A Journal of the Human Environment, 36(4): 335–344

    Article  CAS  Google Scholar 

  • Asselen S V, Verburg P H, Vermaat J E, Janse J H (2013). Drivers of wetland conversion: a global meta-analysis. PLoS One, 8(11): e81292

    Article  Google Scholar 

  • Avis C A, Weaver A J, Meissner K J (2011). Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geoscience, 4(7): 444–448

    Article  CAS  Google Scholar 

  • Bai J H, Ouyang H, Yang Z F, Cui B S, Cui L J, Wang Q G (2005). Changes in wetland landscape patterns: a review. Progress in Geography, 24(4): 36–45

    Google Scholar 

  • Bao K S, Xing W, Song L H, Li H K, Liu H X, Wang G P (2018). A 100-year history of water level change and driving mechanism in Heilongjiang River basin wetlands. Quaternary Sciences, 38(4): 981–995 (in Chinese)

    Google Scholar 

  • Becker E A, Carretta J V, Forney K A, Barlow J, Brodie S, Hoopes R, Jacox M G, Maxwell S M, Redfern J V, Sisson N B J E, Welch H, Hazen E L (2020). Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecology and Evolution, 10(12): 5059–5084

    Article  Google Scholar 

  • Brown A E, Zhang L, Mcmahon T A, Western A W, Vertessy R A (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology (Amsterdam), 310(1–4): 48–61

    Google Scholar 

  • Burges C J (2010). From ranknet to lambdarank to lambdamart: an overview. Learning, 11(23–581): 81

    Google Scholar 

  • Butchart S H M, Resit Akçakaya H, Chanson J, Baillie J E M, Collen B, Quader S, Turner W R, Amin R, Stuart S N, Hilton-Taylor C (2007). Improvements to the red list index. PLoS One, 2(1): e140

    Article  Google Scholar 

  • Chen H, Zhang W, Gao H, Nie N (2018). Climate change and anthropogenic impacts on wetland and agriculture in the Songnen and Sanjiang Plain, Northeast China. Remote Sensing, 10(3): 356–380

    Article  Google Scholar 

  • Collinge S K (2009). Ecology of Fragmented Landscapes. Baltimore: Johns Hopkins University Press

    Book  Google Scholar 

  • Convention on Wetlands (2021). Global Wetland Outlook. Gland: Secretariat of the Convention on Wetlands

    Google Scholar 

  • Dahl T E (1990). Wetlands Losses in the United States, 1080’s to 1980’s. Washington, DC: US Department of the Interior, Fish and Wildlife Service

    Google Scholar 

  • Dang Y C, He H S, Zhao D D, Sunde M, Du H B (2020). Quantifying the relative importance of climate change and human activities on selected wetland ecosystems in China. Sustainability, 12(3): 912

    Article  Google Scholar 

  • Daniel J, Rooney R C, Robinson D T (2022). Climate, land cover and topography: essential ingredients in predicting wetland permanence. Biogeosciences, 19(5): 1540–1500

    Article  Google Scholar 

  • Dar S A, Bhat S U, Rashid I, Dar S A (2020). Current status of wetlands in Srinagar city: threats, management strategies, and future perspectives. Frontiers in Environmental Science, 7: 199

    Article  Google Scholar 

  • Davidson N C (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area Marine and Freshwater Research, 65(10): 934–941

    Article  Google Scholar 

  • Dawson T P, Berry P M, Kampa E (2003). Climate change impacts on freshwater wetland habitats. Journal for Nature Conservation, 11(1): 45–30

    Article  Google Scholar 

  • Du H, He H S, Wu Z, Wang L, Zong S, Liu J (2017). Human influences on regional temperature change-comparing adjacent plains of China and Russia. International Journal of Climatology, 37(6): 4913–4944

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E (2016). Overview of the Coupled Model Intercom-parison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1930–1958

    Article  Google Scholar 

  • Freund Y, Schapire R E (1990). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1): 119–139

    Article  Google Scholar 

  • Friedman J H (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5): 1189–1434

    Article  Google Scholar 

  • Friedman J H (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4): 360–308

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Annals of Statistics, 48(4): 330–400

    Google Scholar 

  • Gao J, Li X, Brierley G (2012). Topographic influence on wetland distribution and change in Maduo County, Qinghai-Tibet Plateau, China. Journal of Mountain Science, 9(3): 364–301

    Article  Google Scholar 

  • Gardner R C, Barchiesi S, Barchiesi S, Finlayson C, Galewski T, Harrison I, Paganini M, Perennou C, Pritchard D, Rosenqvist A, Walpole M (2015). State of the World’s Wetlands and their Services to People: A Compilationof Recent Analyses. Ramsar Briefing Note No. 7. Gland: Ramsar Convention Secretariat doi: https://doi.org/10.4139/ssrn.2589447SSRN Electronic Journal

    Google Scholar 

  • Gedney N (2004). Climate feedback from wetland methane emissions. Geophysical Research Letters, 31(20): L20503

    Article  Google Scholar 

  • Gesch D B, Verdin K L, Greenlee S K (1999). New land surface digital elevation model covers the Earth. EOS, Transactions American Geophysical Union, 80(6): 69–00

    Article  Google Scholar 

  • He H S, Dezonia B E, Mladenoff D J (2000). An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecology, 15(7): 591–601

    Article  Google Scholar 

  • Hu T G, Liu J H, Zheng G, Zhang D R, Huang K N (2020). Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling. Land Degradation & Development, 31(1): 65–80

    Article  Google Scholar 

  • Hutchinson M F, Xu T B (2004). Anusplin version 4.2 User Guide. Canberra: Centre for Resource and Environmental Studies, Australian National University

    Google Scholar 

  • Huu Nguyen H, Dargusch P, Moss P, Tran D B (2016). A review of the drivers of 200 years of wetland degradation in the Mekong Delta of Vietnam. Regional Environmental Change, 16(8): 4303–4315

    Article  Google Scholar 

  • Jia M M, Mao D H, Wang Z M, Ren C Y, Zhu Q D, Li X C, Zhang Y Z (2020). Tracking long-term floodplain wetland changes: a case study in the China side of the Amur River Basin. International Journal of Applied Earth Observation and Geoinformation, 92: 102185

    Article  Google Scholar 

  • Jorgenson M T, Racine C H, Walters J C, Osterkamp T E (2001). Permafrost degradation and ecological changes associated with a warming climate in Central Alaska. Climatic Change, 48(4): 551–509

    Article  CAS  Google Scholar 

  • Klein Goldewijk K, Beusen A, Doelman J, Stehfest E (2017). Anthropogenic land use estimates for the Holocene-HYDE 3.2. Earth System Science Data, 9(2): 927–953

    Article  Google Scholar 

  • Ladhar S S (2002). Status of ecological health of wetlands in Punjab, India. Aquatic Ecosystem Health & Management, 5(4): 457–465

    Article  Google Scholar 

  • Lee S Y, Dunn R J K, Young R A, Connolly R M, Dale P E R, Dehayr R, Lemckert C J, Mckinnon S, Powell B, Teasdale P R, et al. (2006). Impact of urbanization on coastal wetland structure and function. Austral Ecology, 31(2): 149–163

    Article  Google Scholar 

  • Li B L, Hu Y M, Chang Y, Liu M, Wang W J, Bu R C, Shi S X, Qi L (2021). Analysis of the factors affecting the long-term distribution changes of wetlands in the Jing-Jin-Ji region, China. Ecological Indicators, 124: 107413

    Article  Google Scholar 

  • Li Z, Liu M, Hu Y M, Xue Z S, Sui J L (2020). The spatiotemporal changes of marshland and the driving forces in the Sanjiang Plain, Northeast China from 1980 to 2016. Ecological Processes, 9(1): 24–36

    Article  Google Scholar 

  • Liu H, Bu R, Liu J, Leng W, Hu Y, Yang L, Liu H (2011). Predicting the wetland distributions under climate warming in the Great Xing’ an Mountains, northeastern China. Ecological Research, 26(3): 605–613

    Article  Google Scholar 

  • Liu X P, Liang X, Li X, Xu X C, Ou J P, Chen Y M, Li S Y, Wang S J, Pei F S (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168: 94–116

    Article  Google Scholar 

  • Lu C Y, Ren C Y, Wang Z M, Zhang B, Man W D, Yu H, Gao Y B, Liu M Y (2019). Monitoring and assessment of wetland loss and fragmentation in the cross-boundary protected area: a case study of Wusuli River basin. Remote Sensing, 11(21): 2581

    Article  Google Scholar 

  • Mao D H, Luo L, Wang Z M, Wilson M C, Zeng Y, Wu B F, Wu J G (2018a). Conversions between natural wetlands and farmland in China: a multiscale geospatial analysis. Science of the Total Environment, 634: 550–560

    Article  CAS  Google Scholar 

  • Mao D H, Tian Y L, Wang Z M, Jia M M, Du J, Song C C (2021). Wetland changes in the Amur River Basin: differing trends and proximate causes on the Chinese and Russian sides. Journal of Environmental Management, 280: 111670

    Article  Google Scholar 

  • Mao D H, Wang Z M, Du B J, Li L, Tian Y L, Jia M M, Zeng Y, Song K S, Jiang M, Wang Y Q (2020). National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat-8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 11–25

    Article  Google Scholar 

  • Mao D H, Wang Z M, Wu J G, Wu B F, Zeng Y, Song K S, Yi K P, Luo L (2018b). China’s wetlands loss to urban expansion. Land Degradation & Development, 29(8): 2644–2657

    Article  Google Scholar 

  • McCauley L A, Anteau M J, Van Der Burg M P, Wiltermuth M T (2015). Land use and wetland drainage affect water levels and dynamics of remaining wetlands. Ecosphere, 6(6): 1–22

    Article  Google Scholar 

  • McCauley L A, Jenkins D G, Quintana-Ascencio P F (2013). Isolated wetland loss and degradation over two decades in an increasingly urbanized landscape. Wetlands, 33(1): 117–127

    Article  Google Scholar 

  • Mcgarigal K (1995). FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Amherst: US Department of Agriculture, Forest Service, Pacific Northwest Research Station Melles M, Svendsen J I, Fedorov G, Wagner B (2019). Northern Eurasian lakes–Late Quaternary glaciation and climate history–introduction. Boreas, 48(2): 269–272

    Google Scholar 

  • Meng L, Roulet N, Zhuang Q L, Christensen T R, Frolking S (2016). Focus on the impact of climate change on wetland ecosystems and carbon dynamics. Environmental Research Letters, 11(10): 100201

    Article  Google Scholar 

  • Merot P, Squividant H, Aurousseau P, Hefting M, Burt T, Maitre V, Kruk M, Butturini A, Thenail C, Viaud V (2003). Testing a climato-topographic index for predicting wetlands distribution along an European climate gradient. Ecological Modelling, 163(1–2): 51–71

    Article  Google Scholar 

  • Minakir П A, Cheng H Z (2014). New strategy of Russian Far East development: assessment and prospect. Siberian Studies, 41(4): 13–16

    Google Scholar 

  • Na X D, Zang S Y, Zhang N N, Cui J (2015). Impact of land use and land cover dynamics on Zhalong wetland reserve ecosystem, Heilongjiang Province, China. International Journal of Environmental Science and Technology, 12(2): 445–454

    Article  Google Scholar 

  • Nguyen H H, Dargusch P, Moss P, Aziz A A (2017). Land-use change and socio-ecological drivers of wetland conversion in Ha Tien Plain, Mekong Delta, Vietnam. Land Use Policy, 64: 101–113

    Article  Google Scholar 

  • Niu Z G, Zhang H Y, Wang X W, Yao W B, Zhou D M, Zhao K Y, Zhao H, Li N N, Huang H B, Li C C, et al. (2012). Mapping wetland changes in China between 1978 and 2008. Chinese Science Bulletin, 57(22): 2813–2823

    Article  Google Scholar 

  • Norris R H, Liston P, Davies N, Coysh J, Dyer F, Linke S, Prosser I, Young B (2001). Snapshot of the Murray-Darling Basin river condition. Canberra: Murray-Darling Basin Commission O’Neill R V, Hunsaker C T, Timmins S P, Jackson B L, Jones K B, Riitters K H, Wickham J D (1996). Scale problems in reporting landscape pattern at the regional scale. Landscape Ecology, 11(3): 169–180

    Google Scholar 

  • Obu J (2021). How much of the earth’s surface is underlain by permafrost? Journal of Geophysical Research: Earth Surface, 126(5): e2021JF006123

    Article  Google Scholar 

  • Obu J, Westermann S, Bartsch A, Berdnikov N, Christiansen H H, Dashtseren A, Delaloye R, Elberling B, Etzelmüller B, Kholodov A, et al. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews, 193: 299–316

    Article  Google Scholar 

  • Ramsar Convention on Wetlands, FAO, International Water Management Institute (IWMI) (2014). Wetlands and agriculture: partners for growth. Gland, Switzerland: Ramsar Convention on Wetlands; Rome, Italy: FAO; Colombo, Sri Lanka: International Water Management Institute (IWMI)

    Google Scholar 

  • Ridgeway G (1999). The state of boosting. Computing Science and Statistics, 31: 172–181

    Google Scholar 

  • Ridgeway G (2007). Generalized Boosted Models: a guide to the GBM package. Update, 1: 1–12

    Google Scholar 

  • Shamov V V, Onishi T, Kulakov V V (2014). Dissolved iron runoff in Amur Basin Rivers in the late XX century. Water Resources, 41(2): 201–209

    Article  CAS  Google Scholar 

  • Simonov E, Egidarev E (2018). Intergovernmental cooperation on the Amur River basin management in the twenty-first century. International Journal of Water Resources Development, 34(5): 771–791

    Article  Google Scholar 

  • Sokolova G V, Verkhoturov A L, Korolev S P (2019). Impact of deforestation on streamflow in the Amur River Basin. Geosciences, 9(6): 262

    Article  Google Scholar 

  • Song K S, Wang Z M, Du J, Liu L, Zeng L, Ren C Y (2014). Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environmental Management, 54(2): 255–271

    Article  Google Scholar 

  • Steinhardt U, Herzog F, Lausch A, Müller E, Lehmann S (1999). Hemeroby index for landscape monitoring and evaluation. In: Pykh Y A, Hyatt D E, Lenz R J, eds. Environmental Indices-System Analysis Approach. Oxford: EOLSS

    Google Scholar 

  • Walz U, Stein C (2014). Indicators of hemeroby for the monitoring of landscapes in Germany. Journal for Nature Conservation, 22(3): 279–289

    Article  Google Scholar 

  • Wang C F (1991). Modern Forestry Economic History of the Northeast. Harbin: China Forestry Publishing House (in Chinese)

    Google Scholar 

  • Wang G C (2006). Population growth in modern Northeast China and its impact on economic development. Population Journal, 156(2): 19–23 (in Chinese)

    Google Scholar 

  • Wang Y S, Gu J D (2021). Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. International Biodeterioration & Biodegradation, 162: 105248

    Article  CAS  Google Scholar 

  • Woodward C, Shulmeister J, Larsen J, Jacobsen G E, Zawadzki A (2014). The hydrological legacy of deforestation on global wetlands. Science, 346(6211): 844–847

    Article  CAS  Google Scholar 

  • Xiang H X, Wang Z M, Mao D H, Zhang J, Xi Y B, Du B J, Zhang B (2020). What did China’s national wetland conservation program achieve? Observations of changes in land cover and ecosystem services in the Sanjiang Plain Journal of Environmental Management, 267: 110623

    Article  Google Scholar 

  • Xie Z L, Xu X G, Yan L (2010). Analyzing qualitative and quantitative changes in coastal wetland associated to the effects of natural and anthropogenic factors in a part of Tianjin, China. Estuarine, Coastal and Shelf Science, 86(3): 379–386

    Article  Google Scholar 

  • Xu N, Li H, Luo C, Zhang H, Qu Y (2022). Exploring spatial relationship between restoration suitability and rivers for sustainable wetland utilization. International Journal of Environmental Research and Public Health, 19(13): 8083

    Article  Google Scholar 

  • Yan F Q, Zhang S W, Liu X T, Yu L X, Chen D, Yang J C, Yang C B, Bu K, Chang L P (2017). Monitoring spatiotemporal changes of marshes in the Sanjiang Plain, China. Ecological Engineering, 104: 184–194

    Article  Google Scholar 

  • Yang Q, Hu P, Wang J H, Zeng Q H, Yang Z F, Liu H, Dong Y Y (2021a). The stereoscopic spatial connectivity of wetland ecosystems: evaluation method and regulation measures. Hydrological Processes, 35(5): e14074

    Article  Google Scholar 

  • Yang X, Zhou B, Xu Y, Han Z (2021b). CMIP6 evaluation and projection of temperature and precipitation over China. Advances in Atmospheric Sciences, 38(5): 817–830

    Article  Google Scholar 

  • Zan C J, Liu T, Huang Y, Bao A M, Yan Y Y, Ling Y N, Wang Z, Duan Y C (2022). Spatial and temporal variation and driving factors of wetland in the Amu Darya River Delta, Central Asia. Ecological Indicators, 139: 108898

    Article  Google Scholar 

  • Zedler J B (2003). Wetlands at your service: reducing impacts of agriculture at the watershed scale. Frontiers in Ecology and the Environment, 1(2): 65–72

    Article  Google Scholar 

  • Zedler J B, Kercher S (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30(1): 39–74

    Article  Google Scholar 

  • Zhang H, Valiranta M, Swindles G T, Aquino-Lopez M A, Mullan D, Tan N, Amesbury M, Babeshko K V, Bao K, Bobrov A, et al. (2022). Recent climate change has driven divergent hydrological shifts in high-latitude peatlands. Nature Communications, 13(1): 4959

    Article  CAS  Google Scholar 

  • Zhang M, Yu H P, King A D, Wei Y, Huang J P, Ren Y (2020). Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia. Climatic Change, 162(2): 603–619

    Article  Google Scholar 

  • Zhang Y H, Yan J Z, Cheng X, He X J (2021). Wetland changes and their relation to climate change in the Pumqu Basin, Tibetan Plateau. International Journal of Environmental Research and Public Health, 18(5): 2682

    Article  Google Scholar 

  • Zhou D M, Gong H, Wang Y Y, Khan S, Zhao K Y (2009). Driving forces for the marsh wetland degradation in the Honghe National Nature Reserve in Sanjiang Plain, Northeast China. Environmental Modeling and Assessment, 14(1): 101–111

    Article  Google Scholar 

  • Zhu Q D, Wang Y N, Liu J X, Li X C, Pan H R, Jia M M (2021). Tracking historical wetland changes in the china side of the Amur River Basin based on Landsat imagery and training samples migration. Remote Sensing, 13(11): 2161

    Article  Google Scholar 

  • Zorrilla-Miras P, Palomo I, Gómez-Baggethun E, Martín-López B, Lomas P L, Montes C (2014). Effects of land-use change on wetland ecosystem services: a case study in the Doñana marshes (SW Spain). Landscape and Urban Planning, 122: 160–104

    Article  Google Scholar 

  • Zou Y, Wang L, Xue Z, E M, Jiang M, Lu X, Yang S, Shen X, Liu Z, Sun G, Yu X (2018). Impacts of agricultural and reclamation practices on wetlands in the Amur River Basin, Northeastern China. Wetlands, 38(2): 383–389

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Fund of National Natural Science Foundation of China (Nos. 42101107 and 42271100). We thank Stephen Shifley for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong S. He.

Additional information

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Highlights

• Wetlands have been fragmented over the last century by environmental changes.

• The relative importance of human activities and climate change varies geographically.

• Human activities are more important than climate change at the century scale.

• Climate change is more important at the decadal scale.

• Geographic factors are most important in all periods of the past century.

Supporting materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., He, H.S., Liu, K. et al. Impact of historical pattern of human activities and natural environment on wetland in Heilongjiang River Basin. Front. Environ. Sci. Eng. 17, 151 (2023). https://doi.org/10.1007/s11783-023-1751-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1751-8

Keywords

Navigation