Skip to main content
Log in

Effects of heavy rainfall on the composition of airborne bacterial communities

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Wet deposition scavenges particles and particle-associated bacteria from the air column, but the impact of raindrops on various surfaces on Earth causes emission of surface-associated bacteria into the air column. Thus, after rainfall, these two mechanisms are expected to cause changes in airborne bacterial community composition (BCC). In this study, aerosol samples were collected at a suburban site in Seoul, Korea before and after three heavy rainfall events in April, May, and July 2011. BCC was investigated by pyrosequencing the 16S rRNA gene in aerosol samples. Interestingly, the relative abundance of non-spore forming Actinobacteria operational taxonomic units (OTUs) was always higher in post-rain aerosol samples. In particular, the absolute and relative abundances of airborne Propionibacteriaceae always increased after rainfall, whereas those of airborne Firmicutes, including Carnobacteriaceae and Clostridiales, consistently decreased. Marine bacterial sequences, which were temporally important in aerosol samples, also decreased after rainfall events. Further, increases in pathogen-like sequences were often observed in post-rain air samples. Rainfall events seemed to affect airborne BCCs by the combined action of the two mechanisms, with potentially adverse effects on human and plant health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polymenakou P N. Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 2012, 3(4): 87–102

    Article  Google Scholar 

  2. Polymenakou P N, Mandalakis M, Stephanou E G, Tselepides A. Particle size distribution of airborne microorganisms and pathogens during an Intense African dust event in the eastern Mediterranean. Environmental Health Perspectives, 2008, 116(3): 292–296

    Article  Google Scholar 

  3. Franzetti A, Gandolfi I, Gaspari E, Ambrosini R, Bestetti G. Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology, 2011, 90(2): 745–753

    Article  CAS  Google Scholar 

  4. Huffman J A, Prenni A J, DeMott P J, Pöehlker C, Mason R H, Robinson N H, Fröehlich-Nowoisky J, Tobo Y, Després V R, Garcia E, Gochis D J, Harris E, Müeller-Germann I, Ruzene C, Schmer B, Sinha B, Day D A, Andreae M O, Jimenez J L, Gallagher M, Kreidenweis S M, Bertram A K, Pöeschl U. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric Chemistry and Physics, 2013, 13: 6151–6164

    Article  Google Scholar 

  5. Joung Y S, Ge Z, Buie C R. Bioaerosol generation by raindrops on soil. Nature Communications, 2017, 8: 14668

    Article  Google Scholar 

  6. Brodie E L, DeSantis T Z, Parker J P M, Zubietta I X, Piceno Y M, Andersen G L. Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 299–304

    Article  CAS  Google Scholar 

  7. Jeon E M, Kim H J, Jung K, Kim J H, Kim M Y, Kim Y P, Ka J O. Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmospheric Environment, 2011, 45(25): 4313–4321

    Article  CAS  Google Scholar 

  8. Maki T, Puspitasari F, Hara K, Yamada M, Kobayashi F, Hasegawa H, Iwasaka Y. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Science of the Total Environment, 2014, 488–489: 75–84

    Article  Google Scholar 

  9. Maki T, Hara K, Iwata A, Lee K C, Kawai K, Kai K, Kobayashi F, Pointing S B, Archer S, Hasegawa H, Iwasaka Y. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmospheric Chemistry and Physics Discussion, 2017, 1–32

    Google Scholar 

  10. Cho B C, Jang G I. Active and diverse rainwater bacteria collected at an inland site in spring and summer 2011. Atmospheric Environment, 2014, 94: 409–416

    Article  CAS  Google Scholar 

  11. Aller J Y, Kuznetsova M R, Jahns C J, Kemp P F. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. Journal of Aerosol Science, 2005, 36(5–6): 801–812

    Article  CAS  Google Scholar 

  12. Cho B C, Hwang C Y. Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiology Ecology, 2011, 76(2): 327–341

    Article  CAS  Google Scholar 

  13. Schäfer H, Muyzer G. Denaturing gradient gel electrophoresis in marine microbial ecology. Methods in Microbiology, 2001, 30: 425–468

    Article  Google Scholar 

  14. Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Van Horn D J, Weber C F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75 (23): 7537–7541

    Article  CAS  Google Scholar 

  15. Clarke K R, Warwick R M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edition. Plymouth: PRIMER-E, 2001

    Google Scholar 

  16. Bowers RM, McLetchie S, Knight R, Fierer N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME Journal, 2011, 5(4): 601–612

    Article  CAS  Google Scholar 

  17. Draxler R R, Rolph G D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY. College Park, MD: NOAA Air Resources Laboratory, 2013. Available online at http://www.arl.noaa.gov/HYSPLIT.php (accessed September 28, 2017)

    Google Scholar 

  18. Sfanos K S, Isaacs W B. An evaluation of PCR primer sets used for detection of Propionibacterium acnes in prostate tissue samples. Prostate, 2008, 68(14): 1492–1495

    Article  CAS  Google Scholar 

  19. Cha S, Lee D, Jang J H, Lim S, Yang D, Seo T. Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in South Korea. Scientific Reports, 2016, 6: 37271

    Article  CAS  Google Scholar 

  20. Bowers R M, McCubbin I B, Hallar A G, Fierer N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmospheric Environment, 2012, 50: 41–49

    Article  CAS  Google Scholar 

  21. Bowers R M, Clements N, Emerson J B, Wiedinmyer C, Hannigan M P, Fierer N. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Technology, 2013, 47(21): 12097–12106

    Article  CAS  Google Scholar 

  22. Stackebrandt E, Rainey F A, Ward-Rainey N L. Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic Bacteriology, 1997, 47(2): 479–491

    Article  Google Scholar 

  23. Normand P. Geodermatophilaceae fam. nov., a formal description. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(10): 2277–2278

    Article  CAS  Google Scholar 

  24. Cox C S. Relative humidity and temperature. In: Cox C, editor. The Aerobiological Pathway of Microorganisms. New York: JohnWiley & Sons, 1987, 172–205

    Google Scholar 

  25. Ehrlich R, Miller S, Walker R L. Effects of atmospheric humidity and temperature on the survival of airborne Flavobacterium. Applied Microbiology, 1970, 20(6): 884–887

    CAS  Google Scholar 

  26. Després V R, Huffman J A, Burrows S M, Hoose C, Safatov A S, Buryak G, Fröhlich-Nowoisky J, Elbert W, AndreaeMO, Pöschl U, Jaenicke R. Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chemical and Physical Meteorology, 2012, 64 (1): 15598

    Google Scholar 

  27. Cuthbertson L, Amores-Arrocha H, Malard L A, Els N, Sattler B, Pearce D A. Characterisation of Arctic bacterial communities in the air above Svalbard. Biology (Basel), 2017, 6(2): 29

    Google Scholar 

  28. Kim H M, Hwang C Y, Cho B C. Arcobacter marinus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(3): 531–536

    Article  CAS  Google Scholar 

  29. Figueras MJ, Collado L, Levican A, Perez J, Solsona MJ, Yustes C. Arcobacter molluscorum sp. nov., a new species isolated from shellfish. Systematic and Applied Microbiology, 2011, 34(2): 105–109

    Article  CAS  Google Scholar 

  30. Tong Y, Lighthart B. Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere. Photochemistry and Photobiology, 1997, 65(1): 103–106

    Article  CAS  Google Scholar 

  31. Ehresmann D W, Hatch M T. Effect of relative humidity on the survival of airborne unicellular algae. Applied Microbiology, 1975, 29(3): 352–357

    CAS  Google Scholar 

  32. Simon M, Azam F. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series, 1989, 51: 201–213

    Article  CAS  Google Scholar 

  33. Taylor P E, Jonsson H. Thunderstorm asthma. Current Allergy and Asthma Reports, 2004, 4(5): 409–413

    Article  Google Scholar 

  34. Locci R. Actinomycete spores. In: Encyclopedia of Life Sciences (eLS). New York: John Wiley & Sons, 2006, doi: 10.1038/nng. els.004237

    Book  Google Scholar 

  35. Harrison R M, Jones A M, Biggins P D, Pomeroy N, Cox C S, Kidd S P, Hobman J L, Brown N L, Beswick A. Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 2005, 49(3): 167–178

    Article  Google Scholar 

  36. Woo A C, Brar M S, Chan Y, Lau M C Y, Leung F C C, Scott J A, Vrijmoed L L P, Zawar-Reza P, Pointing S B. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment, 2013, 74: 291–300

    Article  CAS  Google Scholar 

  37. Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A. Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 2013, 97(11): 4727–4736

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the projects EAST-I, “Long-term change of structure and function in marine ecosystems”, BK 21 + of the Korean government, and a KOPRI project (PE17110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Cheol Cho.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, G.I., Hwang, C.Y. & Cho, B.C. Effects of heavy rainfall on the composition of airborne bacterial communities. Front. Environ. Sci. Eng. 12, 12 (2018). https://doi.org/10.1007/s11783-018-1008-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-018-1008-0

Keywords

Navigation