Skip to main content
Log in

PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride grafted with poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) was synthesized using atomic transfer radical polymerization (ATRP) at different reaction times (9 h, 19 h, and 29 h). The corresponding conversion rates were 10%, 20% and 30%, respectively. PVDF was blended with the copolymer mixture containing PVDF-g-PEGMA, solvent and residual PEGMA under different reaction times. In this study, we explored the effect of the copolymer mixture additives with different synthesis times on cast membrane performance. Increasing the reaction time of PVDF-g-PEGMA causes more PVDF-g-PEGMA and less residual PEGMA to be found in the casting solution. Incremental PVDF-g-PEGMA can dramatically increase the viscosity of the casting solution. An overly high viscosity led to a delayed phase inversion, thus hindering PEGMA segments in PVDF-g-PEGMA from migrating to the membrane surface. However, more residual PEGMA contributed to helping more PEGMA segments migrate to the membrane surface. The pure water fluxes of the blended membrane with reaction times of 9 h, 19 h, and 29 h are 5445 L∙m–2∙h–1, 1068 L∙m–2∙h–1 and 1179 L∙m–2∙h–1, respectively, at 0.07 MPa. Delayed phase inversion can form smaller surface pore size distributions, thus decreasing the water flux for the membranes with PVDF-g-PEGMA at 19 h and 29 h. Therefore, we can control the membrane pore size distribution by decreasing the reaction time of PVDF-g-PEGMA to obtain a better flux performance. The membrane with PVDF-g-PEGMA at 19 h exhibits the best foulant rejection and cleaning recovery due to its narrow pore size distribution and high surface oxygen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang G D, Cao Y M. Application and modification of poly (vinylidene fluoride) (PVDF) membranes–A review. Journal of Membrane Science, 2014, 463: 145–165

    Article  CAS  Google Scholar 

  2. Liu F, Hashim N A, Liu Y T, Abed M R M, Li K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 2011, 375(1–2): 1–27

    Article  CAS  Google Scholar 

  3. Moghimifar V, Raisi A, Aroujalian A. Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. Journal of Membrane Science, 2014, 461: 69–80

    Article  CAS  Google Scholar 

  4. Ni L, Meng J Q, Li X G, Zhang Y F. TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science, 2014, 451: 205–215

    Article  CAS  Google Scholar 

  5. Zhao X T, Su Y L, Chen W J, Peng J M, Jiang Z Y. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science, 2012, 415–416: 824–834

    Article  Google Scholar 

  6. Ren P F, Fang Y, Wan L S, Ye X Y, Xu Z K. Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): oxidative stability and antifouling capability. Journal of Membrane Science, 2015, 492: 249–256

    Article  CAS  Google Scholar 

  7. Chen Y Q, Wei M J, Wang Y. Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: beyond surface segregation. Journal of Membrane Science, 2016, 505: 53–60

    Article  CAS  Google Scholar 

  8. Liu Y N, Su Y L, Zhao X T, Li Y F, Zhang R N, Jiang Z Y. Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. Journal of Membrane Science, 2015, 486: 195–206

    Article  CAS  Google Scholar 

  9. Rajasekhar T, Trinadh M, Veera Babu P, Sainath A V S, Reddy A V R. Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. Journal of Membrane Science, 2015, 481: 82–93

    Article  CAS  Google Scholar 

  10. Chen C, Tang L, Liu B C, Zhang X, Crittenden J, Chen K L, Chen Y S. Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux. Journal of Membrane Science, 2015, 487: 1–11

    Article  CAS  Google Scholar 

  11. Liu B C, Chen C, Li T, Crittenden J, Chen Y S. High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. Journal of Membrane Science, 2013, 445: 66–75

    Article  CAS  Google Scholar 

  12. Ochoa N. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. Journal of Membrane Science, 2003, 226(1–2): 203–211

    Article  CAS  Google Scholar 

  13. Yuan Z, Dan L X. Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30). Desalination, 2008, 223(1–3): 438–447

    Article  Google Scholar 

  14. Liu B C, Chen C, Zhao P J, Li T, Liu C H, Wang Q Y, Chen Y S, Crittenden J. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering, 2016, 10(4): 562–574

    Article  CAS  Google Scholar 

  15. Xu Z W, Wu T F, Shi J, Teng K Y, Wang W, Ma M J, Li J, Qian X M, Li C Y, Fan J T. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 2016, 520: 281–293

    Article  CAS  Google Scholar 

  16. Liang S, Gao P, Gao X Q, Xiao K, Huang X. Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles. Frontiers of Environmental Science & Engineering, 2016, 10 (6):113–121 doi:10.1007/s11783-016-0875-5

    Article  Google Scholar 

  17. Zhao Y H, Qian Y L, Zhu B K, Xu Y Y. Modification of porous poly (vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. Journal of Membrane Science, 2008, 310(1–2): 567–576

    Article  CAS  Google Scholar 

  18. Minehara H, Dan K, Ito Y, Takabatake H, Henmi M. Quantitative evaluation of fouling resistance of PVDF/PMMA-g-PEO polymer blend membranes for membrane bioreactor. Journal of Membrane Science, 2014, 466: 211–219

    Article  CAS  Google Scholar 

  19. Ma W Z, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y C, Matsuyama H. Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly (vinylidene fluoride) (PVDF) blend membranes. Journal of Membrane Science, 2016, 514: 429–439

    Article  CAS  Google Scholar 

  20. Venault A, Liu Y H, Wu J R, Yang H S, Chang Y, Lai J Y, Aimar P. Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of Membrane Science, 2014, 450: 340–350

    Article  CAS  Google Scholar 

  21. Venault A, Wu J R, Chang Y, Aimar P. Fabricating hemocompatible bi-continuous PE Gylated PVDF membranes via vapor-induced phase inversion. Journal of Membrane Science, 2014, 470: 18–29

    Article  CAS  Google Scholar 

  22. Carretier S, Chen L A, Venault A, Yang Z R, Aimar P, Chang Y. Design of PVDF/PEGMA-b-PS-b-PEGMA membranes by VIPS for improved biofouling mitigation. Journal of Membrane Science, 2016, 510: 355–369

    Article  CAS  Google Scholar 

  23. Moghareh Abed M R, Kumbharkar S C, Groth A M, Li K. Economical production of PVDF-g-POEM for use as a blend in preparation of PVDF based hydrophilic hollow fibre membranes. Separation and Purification Technology, 2013, 106: 47–55

    Article  CAS  Google Scholar 

  24. Hashim N A, Liu F, Li K. A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. Journal of Membrane Science, 2009, 345(1–2): 134–141

    Article  CAS  Google Scholar 

  25. Hester J F, Banerjee P, Won Y Y, Akthakul A, Acar M H, Mayes A M. ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules, 2002, 35(20): 7652–7661

    Article  CAS  Google Scholar 

  26. Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 1995, 117(20): 5614–5615

    CAS  Google Scholar 

  27. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-( triphenylphosphine)ruthenium(ii)/methylaluminum Bis(2,6- di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995, 28(5): 1721–1723

    Article  CAS  Google Scholar 

  28. Katsoufidou K, Yiantsios S G, Karabelas A J. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 2008, 220(1–3): 214–227

    Article  CAS  Google Scholar 

  29. Ye Y, Chen V, Fane A G. Modeling long-term subcritical filtration of model EPS solutions. Desalination, 2006, 191(1–3): 318–327

    Article  CAS  Google Scholar 

  30. Kim H C, Dempsey B A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. Journal of Membrane Science, 2013, 428: 190–197

    Article  CAS  Google Scholar 

  31. Listiarini K, Chun W, Sun D D, Leckie J O. Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. Journal of Membrane Science, 2009, 344(1–2): 244–251

    Article  CAS  Google Scholar 

  32. Katsoufidou K, Yiantsios S G, Karabelas A J. Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing. Journal of Membrane Science, 2007, 300(1–2): 137–146

    Article  CAS  Google Scholar 

  33. Ang W S, Lee S, Elimelech M. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science, 2006, 272(1–2): 198–210

    Article  CAS  Google Scholar 

  34. Awanis Hashim N, Liu F, Moghareh Abed M R, Li K. Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion. Journal of Membrane Science, 2012, 415–416: 399–411

    Article  Google Scholar 

  35. Peinemann K V, Abetz V, Simon P F W. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials, 2007, 6(12): 992–996

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the National Natural Science Foundation of China (Nos: 51278317 and 51678377), Key Projects in the Science & Technology Program of Hainan Province (No: zdkj2016022), the Applied Basic Research of Sichuan Province (No: 2017JY0238), and the Litree Purifying Technology Co., Ltd (No: 16H0155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baicang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, T., Chen, C. et al. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times. Front. Environ. Sci. Eng. 12, 3 (2018). https://doi.org/10.1007/s11783-017-0980-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0980-0

Keywords

Navigation