Skip to main content
Log in

U-shaped microRNA expression pattern could be a new concept biomarker for environmental estrogen

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Many studies have focused on environmental estrogen-related diseases. However, no consistent gene markers or signatures for estrogenicity have been discovered in mammals. This study investigated the estrogenic effects of 17β-estradiol on the prostate in immature male mice. Consistent U-shaped responses were seen in bodyweight, ventral prostate epithelial morphology, and miRNA expression levels. Specifically, most estradiol regulated miRNAs were downregulated at low doses of estradiol (0.2 and 2 mg·kg–1), and whose expression returned to the control level at a larger dose (200 mg·kg–1). The function of these regulated miRNAs is related to the prostate cancer and PI3K-Akt signaling pathways, which is consistent with the function of estradiol. Furthermore, the miRNA-processing machinery, Drosha, in the prostate was also regulated in a similar pattern, which could be a part of the U-shaped miRNA expression mechanism. All of these data indicate that the prostate is a reliable organ for evaluating estrogenic activity and that the typical nonmonotonic dose-response relationship could be used as a novel biomarker for estrogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerdivel G, Habauzit D, Pakdel F. Assessment and molecular actions of endocrine-disrupting chemicals that interfere with estrogen receptor pathways. International Journal of Endocrinology, 2013, 2013: 501851

    Article  Google Scholar 

  2. Pelekanou V, Leclercq G. Recent insights into the effect of natural and environmental estrogens on mammary development and carcinogenesis. The International Journal of Developmental Biology, 2011, 55(7-8-9): 869–878

    Article  Google Scholar 

  3. Shang G, Xue J, Li M, Hu H Y, Lu Y. Estrogen receptor affinity chromatography: a new method for characterization of novel estrogenic disinfection by-products. Chemosphere, 2014, 104: 251–257

    Article  CAS  Google Scholar 

  4. Li M, Xu B, Liungai Z, Hu H Y, Chen C, Qiao J, Lu Y. The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products. Journal of Hazardous Materials, 2016, 307: 119–126

    Article  CAS  Google Scholar 

  5. Williams G P. The role of oestrogen in the pathogenesis of obesity, type 2 diabetes, breast cancer and prostate disease. European Journal of Cancer Prevention, 2010, 19(4): 256–271

    Article  CAS  Google Scholar 

  6. Burns K A, Korach K S. Estrogen receptors and human disease: an update. Archives of Toxicology, 2012, 86(10): 1491–1504

    Article  CAS  Google Scholar 

  7. vomSaal F S, Timms B G, Montano M M, Palanza P, Thayer K A, Nagel S C, Dhar M D, Ganjam V K, Parmigiani S, Welshons W V. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 2056–2061

    Article  CAS  Google Scholar 

  8. Timms B G, Howdeshell K L, Barton L, Bradley S, Richter C A, vomSaal F S. Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 7014–7019

    Article  CAS  Google Scholar 

  9. Nelson W G, DeMarzo A M, Yegnasubramanian S. The diet as a cause of human prostate cancer. In: Zappia V, Panico S, Russo GL, Budillon A, DellaRagione F, eds. Advances in Nutrition and Cancer. Cancer Treatment and Research. Berlin: Springer Berlin Heidelberg, 2014, 159:51–68

    Article  CAS  Google Scholar 

  10. Sugimura Y, Cunha G R, Donjacour A A. Morphogenesis of ductal networks in the mouse prostate. Biology of Reproduction, 1986, 34 (5): 961–971

    Article  CAS  Google Scholar 

  11. Jarred R A, McPherson S J, Bianco J J, Couse J F, Korach K S, Risbridger G P. Prostate phenotypes in estrogen-modulated transgenic mice. Trends in Endocrinology and Metabolism, 2002, 13 (4): 163–168

    Article  CAS  Google Scholar 

  12. Hewitt S C, Deroo B J, Hansen K, Collins J, Grissom S, Afshari C A, Korach K S. Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Molecular Endocrinology (Baltimore, Md.), 2003, 17(10): 2070–2083

    Article  CAS  Google Scholar 

  13. Watanabe H, Suzuki A, Kobayashi M, Takahashi E, Itamoto M, Lubahn D B, Handa H, Iguchi T. Analysis of temporal changes in the expression of estrogen-regulated genes in the uterus. Journal of Molecular Endocrinology, 2003, 30(3): 347–358

    Article  CAS  Google Scholar 

  14. Hong S H, Nah H Y, Lee J Y, Gye M C, Kim C H, Kim M K. Analysis of estrogen-regulated genes in mouse uterus using cDNA microarray and laser capture microdissection. Journal of Endocrinology, 2004, 181(1): 157–167

    Article  CAS  Google Scholar 

  15. An B S, Choi K C, Kang S K, Hwang W S, Jeung E B. Novel Calbindin-D(9k) protein as a useful biomarker for environmental estrogenic compounds in the uterus of immature rats. Reproductive Toxicology (Elmsford, N.Y.), 2003, 17(3): 311–319

    Article  CAS  Google Scholar 

  16. Calin G A, Croce C M. MicroRNA signatures in human cancers. Nature Reviews, Cancer, 2006, 6(11): 857–866

    Article  CAS  Google Scholar 

  17. Ha M, Kim V N. Regulation of microRNA biogenesis. Nature Reviews, Molecular Cell Biology, 2014, 15(8): 509–524

    Article  CAS  Google Scholar 

  18. Witwer K W. Circulating microRNA biomarker studies: pitfalls and potential solutions. Clinical Chemistry, 2015, 61(1): 56–63

    Article  CAS  Google Scholar 

  19. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocrine Reviews, 2015, 36(6): E1–E150

    Article  CAS  Google Scholar 

  20. Vlachos I S, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou M D, Prionidis K, Dalamagas T, Hatzigeorgiou A G. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Research, 2012, 40(Web Server issueW1): W498–W504

    Article  CAS  Google Scholar 

  21. Lee Y R, Park J, Yu H N, Kim J S, Youn H J, Jung S H. Upregulation of PI3K/Akt signaling by 17beta-estradiol through activation of estrogen receptor-alpha, but not estrogen receptorbeta, and stimulates cell growth in breast cancer cells. Biochemical and Biophysical Research Communications, 2005, 336(4): 1221–1226

    Article  CAS  Google Scholar 

  22. Guo R X, Wei L H, Tu Z, Sun P M, Wang J L, Zhao D, Li X P, Tang J M. 17 beta-estradiol activates PI3K/Akt signaling pathway by estrogen receptor (ER)-dependent and ER-independent mechanisms in endometrial cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2006, 99(1): 9–18

    Article  CAS  Google Scholar 

  23. Hua K, Feng W, Cao Q, Zhou X, Lu X, Feng Y. Estrogen and progestin regulate metastasis through the PI3K/AKT pathway in human ovarian cancer. International Journal of Oncology, 2008, 33 (5): 959–967

    CAS  Google Scholar 

  24. Sosa L, Gutiérrez S, Petiti J P, Palmeri C M, Mascanfroni I D, Soaje M, De Paul A L, Torres A I. 17β-Estradiol modulates the prolactin secretion induced by TRH through membrane estrogen receptors via PI3K/Akt in female rat anterior pituitary cell culture. American Journal of Physiology-Endocrinology and Metabolism, 2012, 302(10): E1189–E1197

    Article  CAS  Google Scholar 

  25. Li Z, Yang S, Liu S. Estrogen protects MIN6 beta-cell from hypoxic cell death via PI3K/Aktpathway. Diabetes, 2013, 62(suppl. 1): A562–A562

    Article  Google Scholar 

  26. Marker P C, Donjacour A A, Dahiya R, Cunha G R. Hormonal, cellular, and molecular control of prostatic development. Developmental Biology, 2003, 253(2): 165–174

    Article  CAS  Google Scholar 

  27. Huang L, Pu Y, Hu WY, Birch L, Luccio-Camelo D, Yamaguchi T, Prins G S. The role of Wnt5a in prostate gland development. Developmental Biology, 2009, 328(2): 188–199

    Article  CAS  Google Scholar 

  28. Klinge C M. Estrogen receptor interaction with co-activators and corepressors. Steroids, 2000, 65(5): 227–251

    Article  CAS  Google Scholar 

  29. Amara J F, Dannies P S. 17 beta-Estradiol has a biphasic effect on gh cell growth. Endocrinology, 1983, 112(3): 1141–1143

    Article  CAS  Google Scholar 

  30. Taylor J A, Grady L H, Engler K S, Welshons W V. Relationship of growth stimulated by lithium, estradiol, and EGF to phospholipase C activity in MCF-7 human breast cancer cells. Breast Cancer Research and Treatment, 1995, 34(3): 265–277

    Article  CAS  Google Scholar 

  31. Wetherill Y B, Petre C E, Monk K R, Puga A, Knudsen K E. The xenoestrogenbisphenol A induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells. Molecular Cancer Therapeutics, 2002, 1(7): 515–524

    CAS  Google Scholar 

  32. Alworth L C, Howdeshell K L, Ruhlen R L, Day J K, Lubahn D B, Huang T H M, Besch-Williford C L, vomSaal F S. Uterine responsiveness to estradiol and DNA methylation are altered by fetal exposure to diethylstilbestrol and methoxychlor in CD-1 mice: effects of low versus high doses. Toxicology and Applied Pharmacology, 2002, 183(1): 10–22

    Article  CAS  Google Scholar 

  33. Welshons W V, Thayer K A, Judy B M, Taylor J A, Curran E M, vomSaal F S. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environmental Health Perspectives, 2003, 111(8): 994–1006

    Article  CAS  Google Scholar 

  34. Chen T. The role of MicroRNA in chemical carcinogenesis. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 2010, 28(2): 89–124

    Article  CAS  Google Scholar 

  35. Amiel J, de Pontual L, Henrion-Caude A. miRNA, development and disease. Advances in Genetics, 2012, 80: 1–36

    CAS  Google Scholar 

  36. Klinge C M. miRNAs and estrogen action. Trends in Endocrinology and Metabolism, 2012, 23(5): 223–233

    Article  CAS  Google Scholar 

  37. Nothnick W B, Healy C. Estrogen induces distinct patterns of microRNA expression within the mouse uterus. Reproductive Sciences (Thousand Oaks, Calif.), 2010, 17(11): 987–994

    Article  CAS  Google Scholar 

  38. Hou L, Lu Y, Li Y, Li L. MiRNA-451 is a potential biomarker for estrogenicity in mouse uterus. Frontiers of Environmental Science & Engineering, 2014, 8(1): 99–105

    Article  CAS  Google Scholar 

  39. Moggs J G, Tinwell H, Spurway T, Chang H S, Pate I, Lim F L, Moore D J, Soames A, Stuckey R, Currie R, Zhu T, Kimber I, Ashby J, Orphanides G. Phenotypic anchoring of gene expression changes during estrogen-induced uterine growth. Environmental Health Perspectives, 2004, 112(16): 1589–1606

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R., Lu, Y., Hou, L. et al. U-shaped microRNA expression pattern could be a new concept biomarker for environmental estrogen. Front. Environ. Sci. Eng. 10, 11 (2016). https://doi.org/10.1007/s11783-016-0880-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-016-0880-8

Keywords

Navigation