Skip to main content
Log in

Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: parameters and conditions

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallicbased Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NO x production but decreases NH3 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duquesne S, Bars M L, Bourbigot S, Delobel R, Poutch F, Camino G, Eling B, Lindsay C, Roels T. Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings. Journal of Fire Sciences, 2000, 18(6): 456–482

    Article  CAS  Google Scholar 

  2. Dagaut P, Glarborg P, Alzueta M U. The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science, 2008, 34(1): 1–46

    Article  CAS  Google Scholar 

  3. Tuovinen H, Blomqvist P, Saric F. Modelling of hydrogen cyanide formation in room fires. Fire Safety Journal, 2004, 39(8): 737–755

    Article  CAS  Google Scholar 

  4. Karlsson H L. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles. Science of the Total Environment, 2004, 334-335: 125–132

    Article  CAS  Google Scholar 

  5. Yuan S, Zhou Z J, Li J, Chen X L, Wang F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis. Energy & Fuels, 2010, 24(11): 6166–6171

    Article  CAS  Google Scholar 

  6. Wang Z H, Jiang M, Ning P, Xie G. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194–12202

    Article  CAS  Google Scholar 

  7. Jiang M, Wang Z H, Ning P, Tian S L, Huang X F, Bai Y W, Shi Y, Ren X G, Chen W, Qin Y S, Zhou J, Miao R R. Dust removal and purification of calcium carbide furnace off-gas. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3): 901–907

    Article  CAS  Google Scholar 

  8. Zhang F M, Li K X, Lu C X, Lu Y G, Yang Y G, Ling L C. Removal methods of hydrogen cyanide. New Carbon Materials, 2003, 18(2): 151–157

    Google Scholar 

  9. Jiang M, Ning P, Wang C H, Chen W, Zhou J, Wang L, Qin Y S. Research progress of HCN-containing exhaust gas treatment. Chemical Industry and Engineering Progress, 2012, 31(11): 2563–2569

    CAS  Google Scholar 

  10. Ning P, Jiang M, Wang X Q, Yang H, Shi Y, Bo Y W. Adsorption of low-concentration HCN on impregnated activated carbon. Journal of Chemical Engineering of Chinese Universities, 2010, 24(6): 1038–1045

    CAS  Google Scholar 

  11. Ye P W, Luan Z Q, Li K, Yu L Q, Zhang J C. The use of a combination of activated carbon and nickel microfibers in the removal of hydrogen cyanide from air. Carbon, 2009, 47(7): 1799–1805

    Article  CAS  Google Scholar 

  12. Ning P, Qiu J, Wang X, Liu W, Chen W. Metal loaded zeolite adsorbents for hydrogen cyanide removal. Journal of Environmental Sciences (China), 2013, 25(4): 808–814

    Article  CAS  Google Scholar 

  13. Colín G M, Ortega G F, Ramos B S, Negron M A. Heterogeneous radiolysis of HCN adsorbed on a solid surface. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619(1): 83–85

    Article  Google Scholar 

  14. Tan H Z, Wang X B, Wang C L, Xu T M. Characteristics of HCN removal using CaO at high temperatures. Energy & Fuels, 2009, 23(3): 1545–1550

    Article  CAS  Google Scholar 

  15. Zhao H B, Tonkyn R G, Barlow S E, Koel B E, Peden C H F. Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst. Applied Catalysis B: Environmental, 2006, 65(3): 282–290

    Article  CAS  Google Scholar 

  16. Giménez-López J, Miller A, Bilbao R, Alzueta MU. HCN oxidation in an O2/CO2 atmosphere: an experimental and kinetic modeling study. Combustion and Flame, 2010, 157(2): 267–276

    Article  Google Scholar 

  17. Marsh J D F, Newling W B S, Rich J. The catalytic hydrolysis of hydrogen cyanide to ammonia. Journal of Applied Chemistry, 1952, 2(12): 681–684

    Article  CAS  Google Scholar 

  18. Nanba T, Obuchi A, Akaratiwa S, Liu S, Uchisawa J, Kushiyama S. Catalytic hydrolysis of HCN over H-ferrierite. Chemistry Letters, 2000, 29(9): 986–987

    Article  Google Scholar 

  19. Schäfer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part II: Heterogeneous reactions involving limestone. Fuel, 2012, 81(13): 1641–1646

    Google Scholar 

  20. Kröcher O, Elsener M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts. Applied Catalysis B: Environmental, 2009, 92(1–2): 75–89

    Article  Google Scholar 

  21. Yuan X, Zhou J, Tian S L. Effects of transition metals grafted gamma-Al2O3 on catalytic hydrolysis of HCN. Research of Environmental Sciences, 2014, 27(12): 1465–1471

    CAS  Google Scholar 

  22. Gayán P, Dueso C, Abad A, Adanez J, Diego L F. NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition-precipitation methods. Fuel, 2009, 88(6): 1016–1023

    Article  Google Scholar 

  23. Gayán P, Diego L F, García-Labiano F. Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemicallooping combustion. Fuel, 2008, 87(12): 2641–2650

    Article  Google Scholar 

  24. HJ 484–2009, Water quality-determination of cyanid-volumetric and spectro-photometry method

  25. Rida K, Benabbas A, Bouremmad F, Peña M A, Sastre E, Martínez- Arias A. Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol-gel derived lanthanum chromite perovskite. Applied Catalysis A, General, 2007, 327(2): 173–179

    Article  CAS  Google Scholar 

  26. Cheng W, Xu J, Ding W, Wang Y, Zheng W, Wu F, Li J. Synthesis of porous super paramagnetic iron oxides from colloidal nanoparticles: effect of calcination temperature and atmosphere. Materials Chemistry and Physics, 2015, 153: 187–194

    Article  CAS  Google Scholar 

  27. Das T, Sengupta S, Deo G. Effect of calcination temperature during the synthesis of Co/Al2O3 catalyst used for the hydrogenation of CO2. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(1): 147–162

    Article  CAS  Google Scholar 

  28. Zhang N W, Huang C J, Zhu X Q, Xu J D, Weng W Z, Wan H L. Effect of calcination temperature and pretreatment with reaction gas on properties of Co/g-Al2O3 catalysts for partial oxidation of methane. Chemistry, an Asian Journal, 2012, 7(8): 1895–1901

    Article  CAS  Google Scholar 

  29. Jung J S, Lee J S, Choi G, Ramesh S, Moon D J. The characterization of micro-structure of cobalt on g-Al2O3 for FTS: effects of pretreatment on Ru-Co/g-Al2O3. Fuel, 2015, 149: 118–129

    Article  CAS  Google Scholar 

  30. Wang J H, Dong X D, Wang Y J, Li Y. Effect of the calcination temperature on the performance of a CeMoOx. Catalysis Today, 2015, 245: 10–15

    Article  CAS  Google Scholar 

  31. Zhu J, Wang W, Hua X N, Xia Z, Deng Z. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/ Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1117–1129

    Article  CAS  Google Scholar 

  32. Ko E Y, Park E D, Seo K W, Lee H C, Lee D, Kim S. Pt-Ni/g-Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream. Catalysis Letters, 2006, 110(3–4): 275–279

    Article  CAS  Google Scholar 

  33. Yang X C, Lu Z G, Kang X C, Wei Y N. Effect of ZrO2 on the structure of NiO/CeO2/g-Al2O3 composite catalysts. Journal of Inorganic Materials, 2009, 24(1): 187–191

    Article  CAS  Google Scholar 

  34. Kröcher O, Elsener M, Jacob E. A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas. Applied Catalysis B: Environmental, 2009, 88(1–2): 66–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Tian, S., Zhou, J. et al. Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: parameters and conditions. Front. Environ. Sci. Eng. 10, 5 (2016). https://doi.org/10.1007/s11783-016-0872-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-016-0872-8

Keywords

Navigation