Skip to main content
Log in

Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous operation

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The microbial community structures of two mesophilic anaerobic chemostats, one fed with glucose, the other with starch as sole carbon sources, were studied at various dilution rates (0.05–0.25 d–1 for glucose and 0.025–0.1 d–1 for starch) during two years continuous operation. In the glucose-fed chemostat, the aceticlastic methanogen Methanosaeta spp. and hydrogenotrophic methanogen Methanoculleus spp. predominated at low dilution rates, whereas Methanosaeta spp. and the hydrogenotrophic Methanobacterium spp. predominated together when dilution rates were greater than 0.1 d–1. Bacteria affiliated with the phyla Bacteroidetes, Spirochaetes, and Actinobacteria predominated at dilution rates of 0.05, 0.1, and 0.15 d–1, respectively, while Firmicutes predominated at higher dilution rates (0.2 and 0.25 d–1). In the starch-fed chemostat, the aceticlastic and hydrogenotrophic methanogens coexisted at all dilution rates. Although bacteria belonging to only two phyla were mainly responsible for starch degradation (Spirochaetes at the dilution rate of 0.08 d–1 and Firmicutes at other dilution rates), different bacterial genera were identified at different dilution rates. With the exception of Archaea in the glucose-fed chemostat, the band patterns revealed by denaturing gradient gel electrophoresis (DGGE) of the microbial communities in the two chemostats displayed marked changes during long-term operation at a constant dilution rate. The bacterial community changed with changes in the dilution rate, and was erratic during longterm operation in both glucose-fed and starch-fed chemostats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang S Y, Dai Y Z, Liu Z Y. Food IndustrialWastewater Treatment. Beijing: Chemical Industry Press, 2001 (in Chinese)

    Google Scholar 

  2. Abbasi T, Tauseef S M, Abbasi S A. Anaerobic digestion for global warming control and energy generation—An overview. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3228–3242

    Article  CAS  Google Scholar 

  3. Ito T, Yoshiguchi K, Ariesyady H D, Okabe S. Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. Bioresource Technology, 2012, 123: 599–607

    Article  CAS  Google Scholar 

  4. Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J. How stable is stable? Function versus community composition. Applied and Environmental Microbiology, 1999, 65 (8): 3697–3704

    Google Scholar 

  5. Yu Z T, Schanbacher F L. Production of methane biogas as fuel through anaerobic digestion. In: Singh OV, Harvey SP, eds. Sustainable Biotechnology. Netherlands: Springer, 2010, 106–127

    Google Scholar 

  6. Ferry J G. Fermentation of acetate. In: Ferry JG, ed. Methanogenesis: Ecology, Physiology, Biochemistry & Genetics. New York: Springer, 1993, 304–334

    Chapter  Google Scholar 

  7. Cheng C H, Hung C H, Lee K S, Liau P Y, Liang C M, Yang L H, Lin P J, Lin C Y. Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions. International Journal of Hydrogen Energy, 2008, 33(19): 5242–5249

    Article  CAS  Google Scholar 

  8. Angenent L T, Karim K, Al-Dahhan M H, Wrenn B A, Domíguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 2004, 22(9): 477–485

    Article  CAS  Google Scholar 

  9. Ahring B K, Ibrahim A A, Mladenovska Z. Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Research, 2001, 35(10): 2446–2452

    Article  CAS  Google Scholar 

  10. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Applied and Environmental Microbiology, 2006, 72(2): 1623–1630

    Article  CAS  Google Scholar 

  11. Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Applied Microbiology and Biotechnology, 2006, 72(2): 401–415

    Article  CAS  Google Scholar 

  12. Tang Y Q, Shigematsu T, Morimura S, Kida K. Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Applied Microbiology and Biotechnology, 2007, 75(2): 451–465

    Article  CAS  Google Scholar 

  13. Ovreås L, Forney L, Daae F L, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 1997, 63(9): 3367–3373

    Google Scholar 

  14. Tang Y Q, Shigematsu T, Ikbal, Morimura S, Kida K. The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Research, 2004, 38(10): 2537–2550

    Article  CAS  Google Scholar 

  15. Huber T, Faulkner G, Hugenholtz P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 2004, 20(14): 2317–2319

    Article  CAS  Google Scholar 

  16. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876–4882

    Article  CAS  Google Scholar 

  17. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596–1599

    Article  CAS  Google Scholar 

  18. Bräuer S L, Cadillo-Quiroz H, Yashiro E, Yavitt J B, Zinder S H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature, 2006, 442(7099): 192–194

    Article  Google Scholar 

  19. Zellner G, Messner P, Winter J, Stackebrandt E. Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in north-Sumatra, Indonesia. International Journal of Systematic Bacteriology, 1998, 48(4): 1111–1117

    Article  CAS  Google Scholar 

  20. Tarasov A L, Borzenkov I A, Chernyh N A, Belyaev S S. Isolation and investigation of anaerobic microorganisms involved in methanol transformation in an underground gas storage facility. Mikrobiologiia, 2011, 80(2): 184–191

    CAS  Google Scholar 

  21. Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME Journal, 2009, 3(6): 700–714

    Article  Google Scholar 

  22. Rattanachomsri U, Kanokratana P, Eurwilaichitr L, Igarashi Y, Champreda V. Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles. Bioscience, Biotechnology, and Biochemistry, 2011, 75(2): 232–239

    Article  CAS  Google Scholar 

  23. Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan S H, Flint H J, O’Neal L, Lawson P A. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Anaerobe, 2012, 18(5): 523–529

    Google Scholar 

  24. Jiménez N, Barcenilla J M, de Felipe F L, de Las Rivas B, Muñoz R. Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Applied Microbiology and Biotechnology, 2014, 98(14): 6329–6337

    Google Scholar 

  25. Briones A M, Daugherty B J, Angenent L T, Rausch K D, Tumbleson M E, Raskin L. Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environmental Microbiology, 2007, 9 (1): 93–106

    Article  CAS  Google Scholar 

  26. Zhang P, Chen Y G, Zhou Q, Zheng X, Zhu X Y, Zhao Y X. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology. Environmental Science & Technology, 2010, 44(24): 9343–9348

    Article  CAS  Google Scholar 

  27. Krakat N, Schmidt S, Scherer P. Mesophilic fermentation of renewable biomass: does hydraulic retention time regulate methanogen diversity? Applied and Environmental Microbiology, 2010, 76 (18): 6322–6326

    Article  CAS  Google Scholar 

  28. Roest K, Heilig H G, Smidt H, de Vos W M, Stams A J, Akkermans A D. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Systematic and Applied Microbiology, 2005, 28(2): 175–185

    Article  CAS  Google Scholar 

  29. Gagliano M C, Braguglia C M, Gallipoli A, Gianico A, Rossetti S. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environmental Science and Pollution Research International, 2015, 22(10): 7339–7348

    Article  CAS  Google Scholar 

  30. Braguglia C M, Gagliano M C, Rossetti S. High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population. Bioresource Technology, 2012, 110: 43–49

    Article  CAS  Google Scholar 

  31. Nelson K E, Zinder S H, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environmental Microbiology, 2003, 5(11): 1212–1220

    Article  Google Scholar 

  32. Fernandez A S, Hashsham S A, Dollhopf S L, Raskin L, Glagoleva O, Dazzo F B, Hickey R F, Criddle C S, Tiedje J M. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology, 2000, 66(9): 4058–4067

    Article  CAS  Google Scholar 

  33. Nesbø C L, Dlutek M, Zhaxybayeva O, Doolittle WF. Evidence for existence of “mesotogas,” members of the order Thermotogales adapted to low-temperature environments. Applied and Environmental Microbiology, 2006, 72(7): 5061–5068

    Article  Google Scholar 

  34. Kundu K, Bergmann I, Hahnke S, Klocke M, Sharma S, Sreekrishnan T R. Carbon source—a strong determinant of microbial community structure and performance of an anaerobic reactor. Journal of Biotechnology, 2013, 168(4): 616–624

    Article  CAS  Google Scholar 

  35. Zumstein E, Moletta R, Godon J J. Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environmental Microbiology, 2000, 2(1): 69–78

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqin Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, M., Zeng, J., Wang, H. et al. Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous operation. Front. Environ. Sci. Eng. 10, 368–380 (2016). https://doi.org/10.1007/s11783-015-0815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0815-9

Keywords

Navigation