Skip to main content
Log in

Organic nitrogen in PM2.5 in Beijing

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Nitrogenous species, as important chemical components in PM2.5, include organic nitrogen (ON) and inorganic nitrogen (IN), both of which have potential effects on human health, climate change and visibility degradation. In this study, we analyzed total nitrogen (TN) by CHN Elemental analyzer and inorganic nitrogen by ion chromatography (IC) respectively to obtain ON by calculating the difference between TN and IN. The results show that the mean ON concentrations in winter and summer are both 2.86 μg·m−3, ten times higher than other places reported on average. ON contributes about 20%–30% to TN on average in both seasons, presenting higher contribution in summer. N:C ratios are much higher in summer than winter. ON sources or formation were strengthened by heavy PM2.5 pollution loads, especially sensitive to sulfate. ON concentrations are higher at night in the both seasons, however with distinguished day and night difference patterns influenced by relative humidity (RH) conditions. In winter, ON concentrations increase with RH on average through low RH values to high RH values. The variations are far larger than the ones caused by day and night difference. However in summer, day and night difference dominates the variations of ON concentrations at low RH values, and RH conditions promote ON concentrations increase significantly only at high RH values. Dust related source and anthropogenic emission related secondary source are identified as important sources for ON. At heavy pollution loads, ON sources are more of secondary formation, possibly strengthened by combination influence of RH and acidity increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Yang F, Tan J, Zhao Q, Du Z, He K, Ma Y, Duan F, Chen G, Zhao Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmospheric Chemistry and Physics, 2011, 11(11): 5207–5219

    Article  CAS  Google Scholar 

  2. He K, Yang F, Ma Y, Zhang Q, Yao X, Chan C K, Cadle S, Chan T, Mulawa P. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 2001, 35(29): 4959–4970

    Article  CAS  Google Scholar 

  3. Cape J N, Cornell S E, Jickells T D, Nemitz E. Organic nitrogen in the atmosphere—Where does it come from? A review of sources and methods. Atmospheric Research, 2011, 102(1–2): 30–48

    Article  CAS  Google Scholar 

  4. Qiu C, Zhang R. Multiphase chemistry of atmospheric amines. Physical Chemistry Chemical Physics, 2013, 15(16): 5738–5752

    Article  CAS  Google Scholar 

  5. Özel M Z, Hamilton J F, Lewis A C. New sensitive and quantitative analysis method for organic nitrogen compounds in urban aerosol samples. Environmental Science & Technology, 2011, 45(4): 1497–1505

    Article  Google Scholar 

  6. Seitzinger S P, Sanders R W. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnology and Oceanography, 1999, 44(3): 721–730

    Article  CAS  Google Scholar 

  7. Jickells T, Baker A R, Cape J N, Cornell S E, Nemitz E. The cycling of organic nitrogen through the atmosphere. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2013, 368(1621): 20130115

    Article  CAS  Google Scholar 

  8. Kanakidou M, Duce R A, Prospero J M, Baker A R, Benitez-Nelson C, Dentener F J, Hunter K A, Liss P S, Mahowald N, Okin G S, Sarin M, Tsigaridis K, Uematsu M, Zamora L M, Zhu T. Atmospheric fluxes of organic N and P to the global ocean. Global Biogeochemical Cycles, 2012, 26(3): GB3026

    Article  Google Scholar 

  9. Cornell S E. Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component. Environmental Pollution, 2011, 159(10): 2214–2222

    Article  CAS  Google Scholar 

  10. Zhang Q, Anastasio C. Chemistry of fog waters in California’s Central Valley—Part 3: concentrations and speciation of organic and inorganic nitrogen. Atmospheric Environment, 2001, 35(32): 5629–5643

    Article  CAS  Google Scholar 

  11. Ge X L, Wexler A S, Clegg S L. Atmospheric amines—Part I. A review. Atmospheric Environment, 2011, 45(3): 524–546

    Article  CAS  Google Scholar 

  12. Miyazaki Y, Kawamura K, Sawano M. Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios. Geophysical Research Letters, 2010, 37(6): L06803

    Article  Google Scholar 

  13. Russell K M, Keene W C, Maben J R, Galloway J N, Moody J L. Phase partitioning and dry deposition of atmospheric nitrogen at the mid-Atlantic U.S. coast. Journal of Geophysical Research: Atmospheres, 2003, 108(D21): 4656, ACH-1-1-ACH-1-16

    Article  Google Scholar 

  14. Zhang Q, Anastasio C. Conversion of fogwater and aerosol organic nitrogen to ammonium, nitrate, and NOx during exposure to simulated sunlight and ozone. Environmental Science & Technology, 2003, 37(16): 3522–3530

    Article  CAS  Google Scholar 

  15. Bruns E A, Perraud V, Zelenyuk A, Ezell M J, Johnson S N, Yu Y, Imre D, Finlayson-Pitts B J, Alexander M L. Comparison of FTIR and particle mass spectrometry for the measurement of particulate organic nitrates. Environmental Science & Technology, 2010, 44(3): 1056–1061

    Article  CAS  Google Scholar 

  16. Rollins A W. Formation mechanisms and quantification of organic nitrates in atmospheric aerosol. Dissertation for the Doctoral Degree. Berkeley: UC Berkeley, 2010

    Google Scholar 

  17. Day D A, Wooldridge P J, Dillon M B, Thornton J A, Cohen R C. A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. Journal of Geophysical Research: Atmospheres, 2002, 107(D6): 4046, ACH 4-1-ACH 4-14

    Article  Google Scholar 

  18. Rollins A W, Browne E C, Min K E, Pusede S E, Wooldridge P J, Gentner D R, Goldstein A H, Liu S, Day D A, Russell LM, Cohen R C. Evidence for NOx control over nighttime SOA formation. Nature, 2012, 337(6099): 1210–1212

    CAS  Google Scholar 

  19. Day D A, Dillion M B, Wooldridge P J, Thornton J A, Rosen R S, Wood E C, Cohen R C. On alkyl nitrates, O3, and the “missing NOy”. Journal of Geophysical Research: Atmospheres, 2003, 108(D16): 4501, ACH-7-1-ACH-7-10

    Article  Google Scholar 

  20. Nakamura T, Ogawa H, Maripi D K, Uematsu M. Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific. Atmospheric Environment, 2006, 40(37): 7259–7264

    Article  CAS  Google Scholar 

  21. Zhang Y, Zheng L, Liu X, Jickells T, Neil Cape J, Goulding K, Fangmeier A, Zhang F. Evidence for organic N deposition and its anthropogenic sources in China. Atmospheric Environment, 2008, 42(5): 1035–1041

    Article  CAS  Google Scholar 

  22. Duan F, Liu X, He K, Dong S. Measurements and characteristics of nitrogen-containing compounds in atmospheric particulate matter in Beijing, China. Bulletin of Environmental Contamination and Toxicology, 2009, 82(3): 332–337

    Article  CAS  Google Scholar 

  23. Shi J, Gao H, Qi J, Zhang J, Yao X. Sources, compositions, and distributions of water-soluble organic nitrogen in aerosols over the China Sea. Journal of Geophysical Research, D, Atmospheres, 2010, 115(D17): D17303

    Article  Google Scholar 

  24. Cheng Y, He K B, Duan F K, Du Z Y, Zheng M, Ma Y L. Ambient organic carbon to elemental carbon ratios: influence of the thermaloptical temperature protocol and implications. Science of the Total Environment, 2014, 468–469: 1103–1111

    Article  Google Scholar 

  25. Miyazaki Y, Fu P, Ono K, Tachibana E, Kawamura K. Seasonal cycles of water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan. Journal of Geophysical Research, D, Atmospheres, 2014, 119(3): 1440–1454

    Article  CAS  Google Scholar 

  26. Rastogi N, Zhang X, Edgerton E S, Ingall E, Weber R J. Filterable water-soluble organic nitrogen in fine particles over the southeastern USA during summer. Atmospheric Environment, 2011, 45(33): 6040–6047

    Article  CAS  Google Scholar 

  27. de Haan D O, Corrigan A L, Smith KW, Stroik D R, Turley J J, Lee F E, Tolbert MA, Jimenez J L, Cordova K E, Ferrell G R. Secondary organic aerosol-forming reactions of glyoxal with amino acids. Environmental Science & Technology, 2009, 43(8): 2818–2824

    Article  Google Scholar 

  28. Lim Y B, Ziemann P J. Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles. Physical Chemistry Chemical Physics, 2009, 11(36): 8029–8039

    Article  CAS  Google Scholar 

  29. Wang X, Gao S, Yang X, Chen H, Chen J, Zhuang G, Surratt J D, Chan M N, Seinfeld J H. Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols. Environmental Science & Technology, 2010, 44(12): 4441–4446

    Article  CAS  Google Scholar 

  30. Sun Y, Wang Z, Fu P, Jiang Q, Yang T, Li J, Ge X. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment, 2013, 77: 927–934

    Article  CAS  Google Scholar 

  31. Neff J, Holland E, Dentener F, Mcdowell W, Russell K. The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle? Biogeochemistry, 2002, 57–58(1): 99–136

    Article  Google Scholar 

  32. Aiken A C, Decarlo P F, Kroll J H, Worsnop D R, Huffman J A, Docherty K S, Ulbrich I M, Mohr C, Kimmel J R, Sueper D, Sun Y, Zhang Q, Trimborn A, Northway M, Ziemann P J, Canagaratna M R, Onasch T B, Alfarra M R, Prevot A S H, Dommen J, Duplissy J, Metzger A, Baltensperger U, Jimenez J L. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with highresolution time-of-flight aerosol mass spectrometry. Environmental Science & Technology, 2008, 42(12): 4478–4485

    Article  CAS  Google Scholar 

  33. Fry J L, Draper D C, Zarzana K J, Campuzano-Jost P, Day D A, Jimenez J L, Brown S S, Cohen R C, Kaser L, Hansel A, Cappellin L, Karl T, Hodzic Roux A, Turnipseed A, Cantrell C, Lefer B L, Grossberg N. Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2013, 13(17): 8585–8605

    Article  Google Scholar 

  34. Galloway MM, Chhabra P S, Chan AWH, Surratt J D, Flagan R C, Seinfeld J H, Keutsch F N. Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmospheric Chemistry and Physics, 2009, 9(10): 3331–3345

    Article  CAS  Google Scholar 

  35. Ervens B, Volkamer R. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmospheric Chemistry and Physics, 2010, 10(17): 8219–8244

    Article  CAS  Google Scholar 

  36. Walsh M P. PM2.5: global progress in controlling the motor vehicle. Frontiers of Environment Science and Engineering, 2014, 8(1): 1–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengkui Duan or Kebin He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Duan, F., He, K. et al. Organic nitrogen in PM2.5 in Beijing. Front. Environ. Sci. Eng. 9, 1004–1014 (2015). https://doi.org/10.1007/s11783-015-0799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0799-5

Keywords

Navigation