Skip to main content
Log in

Effects of molecular weight and concentration of carboxymethyl cellulose on morphology of hydroxyapatite nanoparticles as prepared with one-step wet chemical method

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Nano-sized apatite particles (nAP) synthesized with carboxymethyl cellulose (CMC) have shown great application potentials in in situ heavy metal remediation. However, differences in CMC’s properties effects on the size of nAP produced are not well understood. In this paper, two types of CMC, with respective molecular weights (MW) of ∼120000 and ∼240000 Dalton or respective polymerization degrees of 500 (CMC-500) and 1050 (CMC-1050), were studied in a concentration range of 0.05%–0.5% (w/w) for nAP synthesis. Morphology of the particles was characterized with transmission electron microscopy (TEM). Results showed that 0.05% CMC-500 solution gave an average particle size of 148.7±134.9 nm, 0.25% CMC-500 solution produced particles of 21.8±20.4 nm, and, 0.5% CMC-500 solution contained particles of 15.8±7.7 nm. In comparison, 0.05% CMC-1050 solution produced nanoparticles of 6.8±3.2 nm, 0.25% CMC-1050 produced smaller nAP of 4.3±3.2 nm, and 0.5% CMC-1050 synthesized the smallest nanoparticles in this study, with an average diameter of 3.0±2.1 nm. Chemical composition of the products was identified with X-ray diffraction (XRD) as pure hydroxyapatite. Interactions between nAP and CMC were discussed with help of attenuated total reflection Fourier transform infrared (ATRFTIR) spectroscopic data. This study showed that CMC at higher concentration as well as higher MW facilitated to produce finer nanoparticles, showing that nAP size could be manipulated by selecting appropriate CMC MW and/or applying appropriate CMC concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaturvedi P K, Seth C S, Misra V. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chemosphere, 2006, 64(7): 1109–1114

    Article  CAS  Google Scholar 

  2. Tica D, Udovic M, Lestan D. Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 2011, 85(4): 577–583

    Article  CAS  Google Scholar 

  3. Tica D, Udovic M, Lestan D. Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning. Chemosphere, 2013, 91(1): 1–6

    Article  CAS  Google Scholar 

  4. Mignardi S, Corami A, Ferrini V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 2012, 86 (4): 354–360

    Article  Google Scholar 

  5. Liu R, Zhao D. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil. Chemosphere, 2013, 91(5): 594–601

    Article  CAS  Google Scholar 

  6. Liu R, Lal R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 2014, 4: 5686–5691

    CAS  Google Scholar 

  7. He F, Zhao D, Liu J, Roberts C B. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 2007, 46(1): 29–34

    Article  CAS  Google Scholar 

  8. Wang Q, Qian H, Yang Y, Zhang Z, Naman C, Xu X. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zerovalent iron nanoparticles. Journal of Contaminant Hydrology, 2010, 114(1–4): 35–42

    Article  CAS  Google Scholar 

  9. El-Temsah Y S, Joner E J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere, 2012, 89(1): 76–82

    Article  CAS  Google Scholar 

  10. Si S, Kotal A, Mandal T K, Giri S, Nakamura H, Kohara T. Sizecontrolled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials, 2004, 16(18): 3489–3496

    Article  CAS  Google Scholar 

  11. Liu R, Zhao D. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Research, 2007, 41(12): 2491–2502

    Article  CAS  Google Scholar 

  12. Joo S H, Al-Abed S R, Luxton T. Influence of carboxymethyl cellulose for the transport of titanium dioxide nanoparticles in clean silica and mineral-coated sands. Environmental Science & Technology, 2009, 43(13): 4954–4959

    Article  CAS  Google Scholar 

  13. Hebeish A A, El-Rafie M H, Abdel-Mohdy F A, Abdel-Halim E S, Emam H E. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers, 2010, 82(3): 933–941

    Article  CAS  Google Scholar 

  14. Liu J, Sutton J, Roberts C B. Synthesis and extraction of monodisperse sodium carboxymethylcellulose-stabilized platinum nanoparticles for the self-assembly of ordered arrays. Journal of Physical Chemistry C, 2007, 111(31): 11566–11576

    Article  Google Scholar 

  15. Tan J, Liu R, Wang W, Liu W, Tian Y, Wu M, Huang Y. Controllable aggregation and reversible pH sensitivity of AuNPs regulated by carboxymethyl cellulose. Langmuir, 2010, 26(3): 2093–2098

    Article  CAS  Google Scholar 

  16. He F, Zhao D. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 2007, 41(17): 6216–6221

    Article  CAS  Google Scholar 

  17. García-Orenes F, Guerrero C, Mataix-Solera J, Navarro-Pedrenõ J, Gómez I, Mataix-Beneyto J. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil & Tillage Research, 2005, 82(1): 65–76

    Article  Google Scholar 

  18. Wang Z S, Hung M T, Liu J C. Sludge conditioning by using alumina nanoparticles and polyelectrolyte. Water Science and Technology, 2007, 56(8): 125–132

    Article  CAS  Google Scholar 

  19. Ojeda G, Alcañiz J M, Le Bissonnais Y. Differences in aggregate stability due to various sewage sludge treatments on a mediterranean calcareous soil. Agriculture, Ecosystems & Environment, 2008, 125 (1–4): 48–56

    Article  Google Scholar 

  20. Bouyer E, Gitzhofer F, Boulos M I. Morphological study of hydroxyapatite nanocrystal suspension. Journal of Materials Science. Materials in Medicine, 2000, 11(8): 523–531

    Article  CAS  Google Scholar 

  21. Ferraz M P, Monteiro F J, Manuel C M. Hydroxyapatite nanoparticles: a review of preparation methodologies. Journal of Applied Biomaterials & Biomechanics, 2004, 2(2): 74–80

    CAS  Google Scholar 

  22. Agricolae F de M. R package version 1.1–8. 2014. Available online at http://CRAN.R-project.org/package=agricolae (accessed February 03, 2014)

  23. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2014. Available online at http://www.R-project.org/ (accessed February 03, 2014)

    Google Scholar 

  24. Amendola V, Meneghetti M. Size evaluation of gold nanoparticles by UV-vis spectroscopy. Journal of Physical Chemistry C, 2009, 113 (11): 4277–4285

    Article  CAS  Google Scholar 

  25. Wang Q, Cui S W. Understanding the physical properties of food polysaccharides. Cui S W, ed. Food carbohydrates: Chemistry, physical properties, and applications. Boca Raton: CRC Press, 2005, 161–218

    Google Scholar 

  26. Yang X, Zhu W. Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose (London, England), 2007, 14(5): 409–417

    CAS  Google Scholar 

  27. Matsumoto T, Zenkoh H. A new molecular model for complexation between carboxymethylcellulose and alkaline- earth metal ions in aqueous systems. Food Hydrocolloids, 1992, 6(4): 379–386

    Article  CAS  Google Scholar 

  28. Shimmin R G, Schoch A B, Braun P V. Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols. Langmuir, 2004, 20(13): 5613–5620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqiang Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Lal, R. Effects of molecular weight and concentration of carboxymethyl cellulose on morphology of hydroxyapatite nanoparticles as prepared with one-step wet chemical method. Front. Environ. Sci. Eng. 9, 804–812 (2015). https://doi.org/10.1007/s11783-015-0785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0785-y

Keywords

Navigation