Skip to main content
Log in

A photolysis coefficient for characterizing the response of aqueous constituents to photolysis

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

UV photolysis and UV based advanced oxidation processes (AOPs) are gaining more and more attention for drinking water treatment. Quantum yield (ø) and molar absorption coefficient (ε) are the two critical parameters measuring the effectiveness of photolysis of a compound. The product of the two was proposed as a fundamental measure of a constituent’s amenability to transformation by photolysis. It was shown that this product, named the photolysis coefficient, k p , can be determined using standard bench tests and captures the properties that govern a constituent’s transformation when exposed to light. The development showed the photolysis coefficient to be equally useful for microbiological, inorganic and organic constituents. Values of k p calculated by the authors based on quantum yield and molar absorption coefficient data from the literature were summarized. Photolysis coefficients among microorganisms ranged from 8500 to more than 600000 and are far higher than for inorganic and organic compounds, which varied over a range of approximately 10 to 1000 and are much less sensitive to UV photolysis than the microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glaze W H, Kang J W, Chapin D H. Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Engineering, 1987, 9(4): 335–352

    Article  CAS  Google Scholar 

  2. Bolton J R. Ultraviolet Applications Handbook, 3rd ed. Edmonton, Canada: Bolton Photosciences, Inc., 2010

    Google Scholar 

  3. Li K, Hokanson D R, Crittenden J C, Trussell R R, Minakata D. Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources. Water Research, 2008, 42(20): 5045–5053

    Article  CAS  Google Scholar 

  4. Li K, Stefan M I, Crittenden J C. UV photolysis of trichloroethylene (TCE): product study and kinetic modeling. Environmental Science & Technology, 2004, 38(24): 6685–6693

    Article  CAS  Google Scholar 

  5. Setlow R B. Cyclobutane-type pyrimidine dimers in polynucleotides. Science, 1966, 153(3734): 379–386

    Article  CAS  Google Scholar 

  6. Oguma K, Katayama H, Mitani H, Morita S, Hirata T, Ohgaki S. Determination of pyrimidine dimers in escherichia coli and cryptosporidium parvum during UV light inactivation, photoreactivation, and dark repair. Applied and Environmental Microbiology, 2001, 67(10): 4630–4637

    Article  CAS  Google Scholar 

  7. Radany E H, Love J D, Friedberg E C. The use of direct photoreversal of UV-irradiated DNA for the demonstration of pyrimidine dimer-DNA glycosylase activity. In: Seeberg E, Kleppe K, eds. Chromosome Damage and Repair. New York, N.Y.: Plenum Publishing Corp., 1981, 91–95

    Chapter  Google Scholar 

  8. Einstein A. Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen der Physik, 1905, 17(6): 132–148

    Article  CAS  Google Scholar 

  9. Rubin M B, Braslavsky S E. Quantum yield: the term and the symbol. A historical search. Photochemical & Photobiological Sciences, 2010, 9(5): 670–674

    Article  CAS  Google Scholar 

  10. Bolton J R, Stefan M I. Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions. Research on Chemical Intermediates, 2002, 28(7–9): 857–870

    Article  CAS  Google Scholar 

  11. Bolton J R, Linden K G. Standardization of methods for fluence (UV Dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 2003, 129(3): 209–215

    Article  CAS  Google Scholar 

  12. Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry, 2nd ed. Hoboken, NJ.: Wiley, 2003

    Google Scholar 

  13. HijnenWA M, Beerendonk E F, Medema G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Research, 2006, 40(1): 3–22

    Article  Google Scholar 

  14. Havelaar A H, Meulemans C C E, Pot-Hodgeboom W M, Koster J. Inactivation of bacteriophage MS2 in wastewater effluent with monochromatic and polychromatic ultraviolet light. Water Research, 1990, 24(11): 1387–1393

    Article  CAS  Google Scholar 

  15. Sharpless C M, Seibold D A, Linden K G. Nitrate photosensitized degradation of atrazine during UV water treatment. Aquatic Sciences, 2003, 65(4): 359–366

    Article  CAS  Google Scholar 

  16. Watts M J, Linden K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Research, 2007, 41(13): 2871–2878

    Article  CAS  Google Scholar 

  17. Li J, Blatchley E R III. UV photodegradation of inorganic chloramines. Environmental Science & Technology, 2009, 43(1): 60–65

    Article  CAS  Google Scholar 

  18. De Laat J, Berne F. La déchloramination des eaux de piscines par irradiation UV. European Journal of Water Quality, 2009, 40(2): 129–149

    Article  CAS  Google Scholar 

  19. De Laat J, Boudiaf N, Dossier-Berne F. Effect of dissolved oxygen on the photodecomposition of monochloramine and dichloramine in aqueous solution by UV irradiation at 253.7 nm. Water Research, 2010, 44(10): 3261–3269

    Article  CAS  Google Scholar 

  20. Lukes P, Clupek M, Babicky V, Sunka P. Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sources Science and Technology, 2008, 17(2): 1–11, article no. 024012

    Article  Google Scholar 

  21. Sanches S, Barreto Crespo M T, Pereira V J. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research, 2010, 44(6): 1809–1818

    Article  CAS  Google Scholar 

  22. Baeza C, Knappe D R U. Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes. Water Research, 2011, 45(15): 4531–4543

    Article  CAS  Google Scholar 

  23. Pereira V J,Weinberg H S, Linden K G, Singer P C. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environmental Science & Technology, 2007, 41(5): 1682–1688

    Article  CAS  Google Scholar 

  24. Yuan F, Hu C, Hu X, Qu J, Yang M. Degradation of selected pharmaceuticals in aqueous solution with UV and UV H2O2. Water Research, 2009, 43(6): 1766–1774

    Article  CAS  Google Scholar 

  25. Rauth A M. The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light. Biophysical Journal, 1965, 5(3): 257–273

    Article  CAS  Google Scholar 

  26. Stefan M I, Bolton J R. UV direct photolysis of N-nitrosodimethylamine (NDMA): kinetic and product study. Helvetica Chimica Acta, 2002, 85(5): 1416–1426

    Article  CAS  Google Scholar 

  27. Sharpless C M, Linden K G. Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water. Environmental Science & Technology, 2003, 37(9): 1933–1940

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Hokanson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hokanson, D.R., Li, K. & Trussell, R.R. A photolysis coefficient for characterizing the response of aqueous constituents to photolysis. Front. Environ. Sci. Eng. 10, 428–437 (2016). https://doi.org/10.1007/s11783-015-0780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0780-3

Keywords

Navigation