Skip to main content
Log in

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO2

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

A novel Ultrasonic Assisted Membrane Reduction (UAMR)-hydrothermal method was used to prepare flower-like Pt/CeO2 catalysts. The texture, physical/chemical properties, and reducibility of the flower-like Pt/CeO2 catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), N2 adsorption, and hydrogen temperature programmed reduction (H2-TPR) techniques. The catalytic performance of the catalysts for treating automobile emission was studied relative to samples prepared by the conventional wetness impregnation method. The Pt/CeO2 catalysts fabricated by this novel method showed high specific surface area and metal dispersion, excellent three-way catalytic activity, and good thermal stability. The strong interaction between the Pt nanoparticles and CeO2 improved the thermal stability. The Ce4+ ions were incorporated into the surfactant chains and the Pt nanoparticles were stabilized through an exchange reaction of the surface hydroxyl groups. The SEM results demonstrated that the Pt/CeO2 catalysts had a typical three-dimensional (3D) hierarchical porous structure, which was favorable for surface reaction and enhanced the exposure degree of the Pt nanoparticles. In brief, the flower-like Pt/CeO2 catalysts prepared by UAMR-hydrothermal method exhibited a higher Pt metal dispersion, smaller particle size, better three-way catalytic activity, and improved thermal stability versus conventional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He H, Dai H X, Ng L H, Wong K W, Au C T. Pd-, Pt-, and Rh-Loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: an investigate on performance and redox properties. Journal of Catalysis, 2002, 206(1): 1–13

    Article  CAS  Google Scholar 

  2. Ikryannikova L N, Aksenov A A, Markaryan G L, Muravéva G P, Kostyuk B G, Kharlanov A N, Lunina E V. The redox treatments influence on the structure and properties of M2O3-CeO2-ZrO2 (M = Y, La) solid solutions. Applied Catalysis A, General, 2001, 210(1–2): 225–235

    Article  CAS  Google Scholar 

  3. Heo I, Choung J W, Kim P S, Nam I S, Song Y I, In C B, Yeo G K. The alteration of the performance of field-aged Pd-based TWCs towards CO and C3H6 oxidation. Applied Catalysis B: Environmental, 2009, 92(1–2): 114–125

    Article  CAS  Google Scholar 

  4. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis I V. An investigation of the role of Zr and La dopants into Ce1 − xyZrxLayOδ enriched γ-Al2O3 TWC washcoats. Applied Catalysis A: General, 2010, 382(1, 30): 73–84

    Article  CAS  Google Scholar 

  5. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis I V, Boukos N. Development of a Ce-Zr-La modified Pt/γ-Al2O3 TWCs washcoat: effect of synthesis procedure on catalytic behavior and thermal durability. Applied Catalysis B: Environmental, 2009, 90(1–2): 162–174

    Article  CAS  Google Scholar 

  6. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakisb I V, Boukos N. Synergistic structural and surface promotion of monometallic (Pt) TWCs: effectiveness and thermal aging tolerance. Applied Catalysis B: Environmental, 2011, 106(1–2): 228–241

    CAS  Google Scholar 

  7. Courtois X, Perrichon V. Distinct roles of copper in bimetallic copper-rhodium three-way catalysts deposited on redox supports. Applied Catalysis B: Environmental, 2005, 57(1–15): 63–72

    Article  CAS  Google Scholar 

  8. Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P D, Somorjai G A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nature Materials, 2009, 8(2): 126–131

    Article  CAS  Google Scholar 

  9. Lim B, Jiang M J, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324(5932): 1302–1305

    Article  CAS  Google Scholar 

  10. Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641

    Article  CAS  Google Scholar 

  11. Liu L C, Guan X, Li Z M, Zi X H, Dai H X, He H. Supported bimetallic AuRh/γ-Al2O3 nanocatalyst for the selective catalytic reduction of NO by propylene. Applied Catalysis B: Environmental, 2009, 90(1–2): 1–9

    Article  CAS  Google Scholar 

  12. Liu L C, Wei T, Zi X H, He H, Dai H X. Research on assembly of nano-Pd colloid and fabrication of supported Pd catalysts from the metal colloid. Catalysis Today, 2010, 153(3–4): 162–169

    Article  CAS  Google Scholar 

  13. Chen G Z, Xu C X, Song X Y, Xu S L, Ding Y, Sun S X. Template-free synthesis of single crystalline like CeO2 hollow nanocubes. Crystal Growth & Design, 2008, 8(12): 4449–4453

    Article  CAS  Google Scholar 

  14. Pan C S, Zhang D S, Shi L Y, Fang J H. Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. European Journal of Inorganic Chemistry, 2008, 2008(15): 2429–2436

    Article  Google Scholar 

  15. Yu R B, Yan L, Zheng P, Chen J, Xing X R. Controlled synthesis of CeO2 flower-like and well-aligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route. Journal of Physical Chemistry C, 2008, 112(50): 19896–19900

    Article  CAS  Google Scholar 

  16. Han W Q, Wu L J, Zhu Y M. Formation and oxidation state of CeO2 − x nanotubes. Journal of the American Chemical Society, 2005, 127(37): 12814–12815

    Article  CAS  Google Scholar 

  17. Wang S R, Zhang J, Jiang J Q, Liu R, Zhu B L, Xu M, Wang Y, Cao J, Li M, Yuan Z, Zhang S, Huang W, Wu S. Porous ceria hollow microspheres: synthesis and characterization. Microporous and Mesoporous Materials, 2009, 123(1–3): 349–353

    Article  CAS  Google Scholar 

  18. Zhong L S, Hu J S, Cao A M, Song W G, Wan L J. 3D flower like ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chemistry of Materials, 2007, 19(7): 1648–1655

    Article  CAS  Google Scholar 

  19. Sun C W, Sun J, Xiao G L, Zhang H R, Qiu X P, Li H, Chen L Q. Mesoscale organization of nearly monodisperse flower like ceria microspheres. Journal of Physical Chemistry B, 2006, 110(27): 13445–13452

    Article  CAS  Google Scholar 

  20. Li H F, Lu G Z, Dai Q G, Wang Y Q, Guo Y, Guo Y L. Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes. Appied Materials and Interfaces, 2010, 2(3): 838–846

    Article  CAS  Google Scholar 

  21. Zhou H P, Wu H S, Shen J, Yin A X, Sun L D, Yan C H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. Journal of the American Chemical Society, 2010, 132(14): 4998–4999

    Article  CAS  Google Scholar 

  22. Rioux R M, Hsu B B, Grass M E, Song H, Somorjai G A. Influence of particle size on reaction selectivity in cyclohexene hydrogenation and dehydrogenation over silica-supported mono-disperse Pt particles. Catalysis Letters, 2008, 126(1–2): 10–19

    Article  CAS  Google Scholar 

  23. Wei Y C, Liu J, Zhao Z, Chen Y S, Xu C M, Duan A J, Jiang G Y, He H. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angewandte Chemie International Edition, 2011, 50(10): 2326–2329

    Article  CAS  Google Scholar 

  24. Wei Y C, Liu J, Zhao Z, Duan A J, Jiang G Y, Xu C M, Gao J S, He H, Wang X P. Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles: synthesis with controllable size and super-catalytic performance for soot oxidation. Energy and Environmental Science, 2011, 4(8): 2959–2970

    Article  CAS  Google Scholar 

  25. Kang S B, Kwon H J, Nam I S, Song Y I, Oh S H. Activity function for describing alteration of three way catalyst performance over palladium only three way catalysts by catalyst mileage. Industrial & Engineering Chemistry Research, 2011, 50(9): 5499–5509

    Article  CAS  Google Scholar 

  26. Concepcion P, Corma A, Silvestre A. Chemoselective hydrogenation catalysts: Pt on meso-structured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder. Journal of American ChemistrySociety, 2004, 126(17): 5523–5532

    Article  CAS  Google Scholar 

  27. Ellis A V, Wilson M A. Carbon exchange in hot alkaline degradation of glucose. Journal of Organic Chemistry, 2002, 67(24): 8469–8474

    Article  CAS  Google Scholar 

  28. Sun C W, Li H, Zhang H R, Wang Z X, Chen L Q. Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology, 2005, 16(9): 1454–1463

    Article  CAS  Google Scholar 

  29. Terribile D, Trovarelli A, Llorca J, Leitenburg C D, Dolcetti G. The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. Journal of Catalysis, 1998, 178(1): 299–308

    Article  CAS  Google Scholar 

  30. Yang B Y, Montgomery R. Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydrate Research, 1996, 280(1): 27–45

    Article  CAS  Google Scholar 

  31. Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M. Metallic Pd nanoparticles formed by Pd-O-Ce interaction: a reason for sintering induced activation for CO oxidation. Chemistry of Materials, 2010, 22(22): 6183–6190

    Article  CAS  Google Scholar 

  32. Shinjoh H, Hatanaka M, Nagai Y, Tanabe T, Takahashi N, Yoshida T, Miyake Y. Suppression of noble metal sintering based on the support anchoring effect and its application in automotive three way catalysis. Topics in Catalysis, 2009, 52(13–20): 1967–1971

    Article  CAS  Google Scholar 

  33. Nagai Y, Hirabayashi T, Dohmae K, Takagi N, Minami T, Shinjoh H, Matsumoto S. Sintering inhibition mechanism of platinum supported on ceria-based oxideand Pt-oxide-support interaction. Journal of Catalysis, 2006, 242(1): 103–109

    Article  CAS  Google Scholar 

  34. Zimmer P, Tschöpe A, Birringer R. Temperature programmed reaction spectroscopy of ceria and Cu/Ceria supported oxide catalyst. Journal of Catalysis, 2002, 205(2): 339–345

    Article  CAS  Google Scholar 

  35. Silvestre-Albero J, Rodríguez-Reinoso F, Sepúlveda-Escribano A. Improved metal-support interaction in Pt/CeO2-SiO2 catalysts after zinc addition. Journal of Catalysis, 2002, 210(1): 127–136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, Z., Liu, X., Ma, D. et al. Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO2 . Front. Environ. Sci. Eng. 8, 483–495 (2014). https://doi.org/10.1007/s11783-013-0595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0595-z

Keywords

Navigation