Skip to main content
Log in

One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

A simple solvothermal method was used to prepare monodisperse magnetite (Fe3O4) nanoparticles attached onto graphene oxide (GO) sheets as adsorbents to remove tetrabromobisphenol A (TBBPA) from an aqueous solution. These Fe3O4/GO (MGO) nanocomposites were characterized by transmission electron microscopy. The adsorption capacity at different initial pH, contact duration, and temperature were evaluated. The kinetics of adsorption was found to fit the pseudo-second-order model perfectly. The adsorption isotherm well fitted the Langmuir model, and the theoretical maximum of adsorption capacity calculated by the Langmuir model was 27.26 mg·g−1. The adsorption thermodynamics of TBBPA on the MGO nanocomposites was determined at 303 K, 313 K, and 323 K, respectively. The results indicated that the adsorption was spontaneous and endothermic. The MGO nanocomposites were conveniently separated from the media by an external magnetic field within several seconds, and then regenerated in 0.2M NaOH solution. Thus, the MGO nanocomposites are a promising candidate for TBBPA removal from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sellström U, Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples. Chemosphere, 1995, 31(4): 3085–3092

    Article  Google Scholar 

  2. Uhnáková B, Petrícková A, Biedermann D, Homolka L, Vejvoda V, Bednář P, Papouš ková B, Šulc M, Martínková L. Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere, 2009, 76(6): 826–832

    Article  Google Scholar 

  3. Sun Z, Mao L, Xian Q, Yu Y, Li H, Yu H. Effects of dissolved organic matter from sewage sludge on sorption of tetrabromobisphenol A by soils. Journal of Environmental Sciences (China), 2008, 20(9): 1075–1081

    Article  CAS  Google Scholar 

  4. Strack S, Detzel T, Wahl M, Kuch B, Krug H F. Cytotoxicity of TBBPA and effects on proliferation, cell cycle and MAPK pathways in mammalian cells. Chemosphere, 2007, 67(9): S405–S411

    Article  CAS  Google Scholar 

  5. Ai L, Zhang C, Chen Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. Journal of Hazardous Materials, 2011, 192(3): 1515–1524

    Article  CAS  Google Scholar 

  6. Sreeprasad T S, Maliyekkal S M, Lisha K P, Pradeep T. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. Journal of Hazardous Materials, 2011, 186(1): 921–931

    Article  CAS  Google Scholar 

  7. Uhnáková B, Ludwig R, Pěknicová J, Homolka L, Lisá L, Šulc M, Petříčková A, Elzeinová F, Pelantová H, Monti D, Krěn V, Haltrich D, Martínková L. Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresource Technology, 2011, 102(20): 9409–9415

    Article  Google Scholar 

  8. Fasfous I I, Radwan E S, Dawoud J N. Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes. Applied Surface Science, 2010, 256(23): 7246–7252

    Article  CAS  Google Scholar 

  9. Wu T, Cai X, Tan S, Li H, Liu J, Yang W. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chemical Engineering Journal, 2011, 173(1): 144–149

    Article  CAS  Google Scholar 

  10. Li N, Zheng M, Chang X, Ji G, Lu H, Xue L, Cao J. Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. Journal of Solid State Chemistry, 2011, 184(4): 953–958

    Article  CAS  Google Scholar 

  11. Wu X L, Wang L, Chen C L, Xu A W, Wang X K. Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. Journal of Materials Chemistry, 2011, 21(43): 17353–17359

    Article  CAS  Google Scholar 

  12. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry, 2009, 19(18): 2710–2714

    Article  CAS  Google Scholar 

  13. Shen J, Hu Y, Shi M, Li N, Ma H, Ye M. One step synthesis of graphene oxide -magnetic nanoparticle composite. Journal of Physical Chemistry C, 2010, 114(3): 1498–1503

    Article  CAS  Google Scholar 

  14. Dreyer D R, Park S, Bielawski C W, Ruoff R S. The chemistry of graphene oxide. Chemical Society Reviews, 2010, 39(1): 228–240

    Article  CAS  Google Scholar 

  15. Zhao G, Li J, Wang X. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chemical Engineering Journal, 2011, 173(1): 185–190

    Article  CAS  Google Scholar 

  16. Cai X, Tan S, Lin M, Xie A, Mai W, Zhang X, Lin Z, Wu T, Liu Y. Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir, 2011, 27(12): 7828–7835

    Article  CAS  Google Scholar 

  17. Wu Q, Zhao G, Feng C, Wang C, Wang Z. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Journal of Chromatography. A, 2011, 1218(44): 7936–7942

    Article  CAS  Google Scholar 

  18. Chen C, Hu J, Shao D, Li J, Wang X. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). Journal of Hazardous Materials, 2009, 164(2–3): 923–928

    Article  CAS  Google Scholar 

  19. Li Z, Sun Q, Gao M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angewandte Chemie (International ed.in English), 2004, 44(1): 123–126

    Article  Google Scholar 

  20. Ge S, Shi X, Sun K, Li C, Uher C, Baker J R, Banaszak HollMM, Orr B G. A Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. The Journal of Physical Chemistry C, 2009, 113(31): 13593–13599

    Article  CAS  Google Scholar 

  21. Qin C, Shen J, Hu Y, Ye M. Facile attachment of magnetic nanoparticles to carbon nanotubes via robust linkages and its fabrication of magnetic nanocomposites. Composites Science and Technology, 2009, 69(3–4): 427–431

    Article  CAS  Google Scholar 

  22. Li B, Cao H, Shao J, Qu M, Warner J H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. Journal of Materials Chemistry, 2011, 21(13): 5069–5075

    Article  CAS  Google Scholar 

  23. He F, Fan J, Ma D, Zhang L, Leung C, Chan H L. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon, 2010, 48(11): 3139–3144

    Article  CAS  Google Scholar 

  24. Sun H, Cao L, Lu L. Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Research, 2011, 4(6): 550–562

    Article  CAS  Google Scholar 

  25. Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 2008, 42(24): 9005–9013

    Article  CAS  Google Scholar 

  26. Sun Z, Yu Y, Mao L, Feng Z, Yu H. Sorption behavior of tetrabromobisphenol A in two soils with different characteristics. Journal of Hazardous Materials, 2008, 160(2–3): 456–461

    Article  CAS  Google Scholar 

  27. Chen W, Duan L, Zhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology, 2007, 41(24): 8295–8300

    Article  CAS  Google Scholar 

  28. Huang J, Huang K, Liu S, Luo Q, Shi S. Synthesis, characterization, and adsorption behavior of aniline modified polystyrene resin for phenol in hexane and in aqueous solution. Journal of Colloid and Interface Science, 2008, 317(2): 434–441

    Article  CAS  Google Scholar 

  29. Lu C, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. Journal of Hazardous Materials, 2006, 138(2): 304–310

    Article  CAS  Google Scholar 

  30. Sheng G D, Shao D D, Ren X M, Wang X Q, Li J X, Chen Y X, Wang X K. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2010, 178(1–3): 505–516

    Article  CAS  Google Scholar 

  31. Vuković G D, MarinkovićA D, Škapin S D, Ristić M D, Aleksić R, Perić-Grujić A A, Uskoković P S. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chemical Engineering Journal, 2011, 173(3): 855–865

    Article  Google Scholar 

  32. Donat R, Akdogan A, Erdem E, Cetisli H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 2005, 286(1): 43–52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Bai or Hanchang Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, L., Bai, X., Zhou, L. et al. One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A. Front. Environ. Sci. Eng. 7, 442–450 (2013). https://doi.org/10.1007/s11783-013-0515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0515-2

Keywords

Navigation