Skip to main content
Log in

Adsorption of sulfonamides on lake sediments

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Sulfonamides (SAs) are one class of the most widely used antibiotics around the world. Their fate and transport in the aquatic environment is of great concern. In this study, adsorption of four SAs—sulfadiazine (SD), sulfamethoxazole (SMZ), sulfadimethoxine (SDM) and sulfamethazine (SM2)—in single-solute and multi-solute systems on sediments of Dianchi (DC) Lake and Taihu (TH) Lake, China was investigated with batch experiments. In the single-solute adsorption system, the Langmuir model and the dual-mode model described the adsorption process better than the Freundlich model. Model fitness was better on DC sediment than on TH sediment. The order of adsorption capacity approximately followed a decreasing order of SDM>SD>SM2>SMZ on both sediments, which was likely attributed to the distinctly different water solubility of the four SAs. In the multi-solute system, the order of adsorption capacity was SM2>SDM>SD>SMZ, which was probably related to the compound speciation caused by the pH values of the experimental solution. In the multi-solute system, both competitive and cooperative adsorption played important roles in the adsorption of sulfonamides on sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurwadkar S T, Adams C D, Meyer M T, Kolpin D W. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1370–1376

    Article  CAS  Google Scholar 

  2. Zhang L. The current situation in production, marketing and tendency of sulfonamides. China Pharmacy, 2005, 16(8): 571–573 (in Chinese)

    Google Scholar 

  3. McEvoy G K. AHFS Drug Information. Bethesda, MD: American Society of Health-System Pharmacists, 2004

    Google Scholar 

  4. Ingerslev F, Halling-Sørensen B. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467–2473

    Article  CAS  Google Scholar 

  5. Miao X S, Bishay F, Chen M, Metcalfe C D. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science & Technology, 2004, 38(13): 3533–3541

    Article  CAS  Google Scholar 

  6. Chang H, Hu J Y, Wang L Z, Shao B. Occurrence of sulfonamide antibiotics in sewage treatment plants. Chinese Science Bulletin, 2008, 53(4): 514–520

    Article  CAS  Google Scholar 

  7. Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 2002, 36(6): 1202–1211

    Article  CAS  Google Scholar 

  8. Managaki S, Murata A, Takada H, Tuyen B C, Chiem N H. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environmental Science & Technology, 2007, 41(23): 8004–8010

    Article  CAS  Google Scholar 

  9. Holm J V, Ruegge K, Bjerg P L, Christensen T H. Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (grindsted, denmark). Environmental Science & Technology, 1995, 29(5): 1415–1420

    Article  CAS  Google Scholar 

  10. Hirsch R, Ternes T, Haberer K, Kratz K L. Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment, 1999, 225(1–2): 109–118

    Article  CAS  Google Scholar 

  11. Sacher F, Gabriel S, Metzinger M, Stretz A, Wenz M, Lange F T, Brauch H J, Blankenhorn I. Arzneimittelwirkstoffe im grundwasser—ergebnisseines monitoring-programms in Baden-Württemberg (Active pharmaceutical ingredients in groundwater—the results of a monitoring program in Baden-Württemberg [Germany]). Vom Wasser, 2002, 99: 183–196 (in German)

    CAS  Google Scholar 

  12. Kim S C, Carlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environmental Science & Technology, 2007, 41(1): 50–57

    Article  CAS  Google Scholar 

  13. Uno K, Aoki T, Kleechaya W, Ruangpan L, Tanasomwang V. Pharmacokinetics of oxolinic acid in black tiger shrimp, Penaeus monodon Fabricius, and the effect of cooking on residues. Aquaculture and Research, 2006, 37(8): 826–833

    Article  CAS  Google Scholar 

  14. Xu J, Wu L S, Chang A C. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 2009, 77(10): 1299–1305

    Article  CAS  Google Scholar 

  15. Xu J, Chen W P, Wu L S, Green R, Chang A C. Leachability of some emerging contaminants in reclaimed municipal wastewater-irrigated turf grass fields. Environmental Toxicology and Chemistry, 2009, 28(9): 1842–1850

    Article  CAS  Google Scholar 

  16. Xu J, Chen W, Wu L, Chang A C. Adsorption and degradation of ketoprofen in soils. Journal of Environmental Quality, 2009, 38(3): 1177–1182

    Article  CAS  Google Scholar 

  17. Zhang G, Liu X, Sun K, Zhao Y, Lin C. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils. Frontiers of Environmental Science & Engineering in China, 2010, 4(4): 421–429

    Article  CAS  Google Scholar 

  18. Wang B, Huang J, Deng S, Yang X, Yu G. Addressing the environmental risk of persistent organic pollutants in China. Frontiers of Environmental Science & Engineering, 2012, 6(1): 2–16

    Article  Google Scholar 

  19. Wang Z H, Ding S Y, Zhang S X, Shen J Z. Structure-activity relationship of 17 sulfonamides binding to antibody by molecular modeling technique. Acta Chimica Sinica, 2008, 66(23): 2613–2619 (in Chinese)

    CAS  Google Scholar 

  20. Thiele-Bruhn S, Seibicke T, Schulten H R, Leinweber P. Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particlesize fractions. Journal of Environmental Quality, 2004, 33(4): 1331–1342

    Article  CAS  Google Scholar 

  21. Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 2005, 39(24): 9509–9516

    Article  CAS  Google Scholar 

  22. Lin C E, Chang C C, Lin W C. Migration behavior and separation of sulfonamides in capillary zone electrophoresis III Citrate buffer as a background electrolyte. Journal of Chromatography A, 1997, 768(1): 105–112

    Article  CAS  Google Scholar 

  23. Xu X R, Li X Y. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere, 2010, 78(4): 430–436

    Article  CAS  Google Scholar 

  24. Jin C X, Chen Q Y, Liu J J, Zhou Q X. Research on the adsorption/desorption characteristics of sulfamonomethoxine on the soil. Environmental Pollution and Control, 2010, 32(5): 47–51 (in Chinese)

    CAS  Google Scholar 

  25. Chen H, Zhang J Q, Zhong M, Li S S, Dong Y H. Adsorption of sulfonamides on paddy soil of Taihu Lake region. China Environmental Science, 2008, 28(4): 309–312 (in Chinese)

    Google Scholar 

  26. Kong J J, Pei Z G, Wen B, Shan X Q, Chen Z L. Adsorption of sulfadiazine and sulfathiazole by soils. Environmental Chemistry, 2008, 27(6): 736–741 (in Chinese)

    CAS  Google Scholar 

  27. Pignatello J J, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science & Technology, 1995, 30(1): 1–11

    Article  Google Scholar 

  28. Xing B, Pignatello J J. Time-dependent isotherm shape of organic compounds in soil organic matter: Implications for sorption mechanism. Environmental Toxicology and Chemistry, 1996, 15(8): 1282–1288

    Article  CAS  Google Scholar 

  29. Gu B, Mehlhorn T L, Liang L, McCarthy J F. Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption. Geochimica et Cosmochimica Acta, 1996, 60(11): 1943–1950

    Article  CAS  Google Scholar 

  30. Xin M H, Li M C, Lan X R, Xie Y, Zhang X S. Competitive absorption of modified chitosan to phenolic pollutants. Environmental Science and Technology, 2007, 30(7): 71–74 (in Chinese)

    Google Scholar 

  31. Zhang W M, Xu Z W, Pan B C, Zhang Q J, Du W, Zhang Q R, Zheng K, Zhang Q X, Chen J L. Adsorption enhancement of laterally interacting phenol/aniline mixtures onto nonpolar adsorbents. Chemosphere, 2007, 66(11): 2044–2049

    Article  CAS  Google Scholar 

  32. Zhang W M, Xu Z W, Pan B C, Zhang Q J, Zhang Q R, Du W, Pan B J, Zhang Q X. Cooperative effect of lateral acid-base interaction on 1-naphthol/1-naphthylamine binary adsorption onto nonpolar polymer adsorbents. Separation and Purification Technology, 2007, 55(2): 141–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z., Xu, J., Zhang, Y. et al. Adsorption of sulfonamides on lake sediments. Front. Environ. Sci. Eng. 7, 518–525 (2013). https://doi.org/10.1007/s11783-013-0500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0500-9

Keywords

Navigation