Skip to main content
Log in

An uncertain energy planning model under carbon taxes

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In this study, an interval fuzzy mixed-integer energy planning model (IFMI-EPM) is developed under considering the carbon tax policy. The developed IFMIEPM incorporates techniques of interval-parameter programming, fuzzy planning and mixed-integer programming within a general energy planning model. The IFMIEPM can not only be used for quantitatively analyzing a variety of policy scenarios that are associated with different levels of carbon tax policy, but also tackle uncertainties expressed as discrete intervals and fuzzy sets in energy and environment systems. Considering low, medium and high carbon tax rates, the model is applied to an ideal energy and environment system. The results indicate that reasonable solutions have been generated. They can be used for generating decision alternatives and thus help decision makers identify desired carbon tax policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ling B. An interval stochastic two-stage linear programming approach for managing CO2 emission quota in power generation sector. Dissertation for the Doctoral Degree, University of Regina, Regina, 2006

    Google Scholar 

  2. Chen B. Climate change and pesticide loss in watershed systems: a simulation modeling study. Journal of Environmental Informatics, 2007, 10(2): 55–67

    Article  Google Scholar 

  3. Baranzini A, Goldemberg J, Speck S. A future for carbon taxes. Ecological Economics, 2000, 32(3): 395–412

    Article  Google Scholar 

  4. Kambo N S, Handa B R, Bose R K. A linear goal programming model for urban energy-economy-environment interaction. Energy and Building, 1991, 16(1–2): 537–551

    Article  Google Scholar 

  5. Fujii Y, Yamaji K. Assessment of technological options in the global energy system for limiting the atmospheric CO2 concentration. Environmental Economics and Policy Studies, 1998, 1(2): 113–139

    Google Scholar 

  6. Copeland B R, Taylor M S. Free trade and global warming: a trade theory view of the Kyoto protocol. Journal of Environmental Economics and Management, 2005, 49(2): 205–234

    Article  Google Scholar 

  7. Lin Q G, Huang G H, Bass B, Chen B, Zhang B Y. CCEM: a citycluster energy systems planning model. Energy Sources, 2009, 31(4): 273–286

    Article  Google Scholar 

  8. Gnansounou E, Dauriat A, Villegas J, Panichelli L. Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresource Technology, 2009, 100(21): 4919–4930

    Article  CAS  Google Scholar 

  9. Kaygusuz K. Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey. Renewable and Sustainable Energy Reviews, 2009, 13(1): 253–270

    Article  Google Scholar 

  10. Ichinohe M, Endo E. Analysis of the vehicle mix in the passengercar sector in Japan for CO2 emissions reduction by a MARKAL model. Applied Energy, 2006, 83(10): 1047–1061

    Article  Google Scholar 

  11. Cherubini F, Bird N D, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S. Energy and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resources, Conservation and Recycling, 2009, 53(8), 434–447

    Article  Google Scholar 

  12. Heinrich G, Howells M, Basson L, Petrie J. Electricity supply industry modelling for multiple objectives under demand growth uncertainty. Energy, 2007, 32(11): 2210–2229

    Article  Google Scholar 

  13. Cai Y P, Huang G H, Yang Z F, Lin Q G, Bass B, Tan Q. Development of an optimization model for energy systems planning in the region of Waterloo. International Journal of Energy Research, 2008, 32(11): 988–1005

    Article  Google Scholar 

  14. Nasiri F, Huang G. Integrated capacity planning for electricity generation: a fuzzy environmental policy analysis approach. Energy Sources, 2008, 3(3): 259–279

    Article  Google Scholar 

  15. Rosenthal D H, Edmonds J A, Richards K R, Wise M A. Stabilizing US net carbon emissions by planting trees. Energy Conversion and Management, 1993, 34(9–11): 881–887

    Article  CAS  Google Scholar 

  16. Kemfert C, Lise W, Tol R S J. Games of climate change with international trade. Environmental and Resource Economics, 2004, 28(2): 209–232

    Article  Google Scholar 

  17. Lin Q G, Huang G H. Planning of energy system management and GHG-emission control in the Municipality of Beijing-an inexactdynamic stochastic programming model. Energy Policy, 2009, 37(11): 4463–4473

    Article  Google Scholar 

  18. Nahorski Z, Horabik J. Greenhouse gas emission permit trading with different uncertainties in emission sources. Journal of Energy Engineering, 2008, 134(2): 47–52

    Article  Google Scholar 

  19. Mao J, Du Y, Xu L, Zeng Y. Quantification of energy related industrial eco-efficiency of China. Frontiers of Environmental Science & Engineering in China, 2011, 5(4): 1–12

    Article  Google Scholar 

  20. Wang W, Luo Y, Deng Z. Bioenergy recovery from landfill gas: a case study in China. Frontiers of Environmental Science & Engineering in China, 2009, 3(1): 20–31

    Article  Google Scholar 

  21. Manne A S, Richels R G. The EC proposal for combining carbon and energy taxes: the implications for future CO2 emissions. Energy Policy, 1993, 21(1): 5–12

    Article  Google Scholar 

  22. Roughgarden T, Schneider S H. Climate change policy: quantifying uncertainties for damages and optimal carbon taxes. Energy Policy, 1999, 27(7): 415–429

    Article  Google Scholar 

  23. Callan T, Lyons S, Scott S, Tol R S J, Verde S. The distributional implications of a carbon tax in Ireland. Energy Policy, 2009, 37(2): 407–412

    Article  Google Scholar 

  24. Popp M, Nalley L. Funding agricultural carbon offset abatements with carbon tax revenue to reduce net greenhouse gas emissions. In: AAEA & NAREA Joint Annual Meeting 2011. Agricultural and Applied Economics Association, Pittsburgh, 2011, 1–2

    Google Scholar 

  25. Shrestha R M, Pradhan S, Migara H L. Effects of carbon tax on greenhouse gas mitigation in Thailand. Climate Policy, 2008, 8(S1): 140–155

    Article  Google Scholar 

  26. Mongelli I, Tassielli G, Notarnicola B. Carbon tax and its short-term effects in Italy: an evaluation through the input-output model. Handbook of Input-Output Economics in Industrial Ecology, 2009, 23(V): 357–377

    Article  Google Scholar 

  27. Metcalf G E. Designing a carbon tax to reduce US greenhouse gas emissions. Review of Environmental Economics and Policy, 2009, 3(1): 63–83

    Article  Google Scholar 

  28. Amano Y, Ito K, Yoshida S, Matsuoa K, Hashizumea T, Favratc D, Maréchal F. Impact analysis of carbon tax on the renewal planning of energy supply system for an office building. Energy, 2010, 35(2): 1040–1046

    Article  CAS  Google Scholar 

  29. Winkler H, Marquard A. Analysis of the Economic Implications of a Carbon Tax. Cape Town: Energy Research Centre, 2009

    Google Scholar 

  30. Xie Y L, Li Y P, Huang G H, Li Y F. An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty. Energy, 2010, 35(12): 4627–4644

    Article  Google Scholar 

  31. Huang G H, Brian W B, Gilles G P. A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 1992, 9(4): 319–335

    Article  CAS  Google Scholar 

  32. Lin Q G, Huang G H, Bass B, Qin X S. IFTEM: an interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty. Energy Policy, 2009, 37(3): 868–878

    Article  Google Scholar 

  33. Zimmermann H J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and systems, 1978, 1(1): 45–55

    Article  Google Scholar 

  34. Xu Y, Huang G H, Qin X S, Huang Y. SRFILP: a stochastic robust fuzzy interval linear programming model for municipal solid waste management under uncertainty. Journal of Environmental Informatics, 2009, 14(2): 72–82

    Article  Google Scholar 

  35. Xu Y, Huang G H, Qin X S. An inexact fuzzy-chance-constrained air quality management model. Journal of the Air & Waste Management Association, 2010, 60(7): 805–819

    Article  CAS  Google Scholar 

  36. Huang G H, Baetz B W, Patry G G. A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 1993, 10(2): 123–146

    Article  Google Scholar 

  37. Huang G H, Baetz B W, Patry G G. Grey integer programming: an application to waste management planning under uncertainty. European Journal of Operational Research, 1995, 83(3): 594–620

    Article  Google Scholar 

  38. Huang G H, Baetz B W, Patry G G. Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socio-Economic Planning Sciences, 1995, 29(1): 17–38

    Article  Google Scholar 

  39. Wang C, Chen J. Parameter uncertainty in CGE modeling of the macroeconomic impact of carbon reduction in China. Tsinghua Science & Technology, 2006, 11(5): 617–624

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zang, H., Xu, Y., Li, W. et al. An uncertain energy planning model under carbon taxes. Front. Environ. Sci. Eng. 6, 549–558 (2012). https://doi.org/10.1007/s11783-012-0414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-012-0414-y

Keywords

Navigation