Skip to main content
Log in

Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities

  • Feature Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus, and metals, biodegradation of environmental contaminants, energy processing, and stress responses. GeoChips are considered as the most comprehensive FGAs. Experimentally established probe design criteria and a computational pipeline integrating sequence retrieval, probe design and verification, array construction, data analysis, and automatic update are used to develop the GeoChip technology. GeoChip has been systematically evaluated and demonstrated to be a powerful tool for rapid, specific, sensitive, and quantitative analysis of microbial communities in a high-throughput manner. Several generations of GeoChip have been developed and applied to investigate the functional diversity, composition, structure, function, and dynamics of a variety of microbial communities from different habitats, such as water, soil, marine, bioreactor, human microbiome, and extreme ecosystems. GeoChip is able to address fundamental questions related to global change, bioenergy, bioremediation, agricultural operation, land use, human health, environmental restoration, and ecological theories and to link the microbial community structure to environmental factors and ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torsvik V, Øvreås L, Thingstad T F. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science, 2002, 296(5570): 1064–1066

    CAS  Google Scholar 

  2. Roesch L F, Fulthorpe R R, Riva A, Casella G, Hadwin A K, Kent A D, Daroub S H, Camargo F A, Farmerie W G, Triplett E W. Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 2007, 1(4): 283–290

    CAS  Google Scholar 

  3. Schloss P D, Handelsman J. Toward a census of bacteria in soil. PLoS Computational Biology, 2006, 2(7): e92

    Google Scholar 

  4. Hong S H, Bunge J, Jeon S O, Epstein S S. Predicting microbial species richness. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(1): 117–122

    CAS  Google Scholar 

  5. Curtis T P, Sloan W T, Scannell J W. Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10494–10499

    CAS  Google Scholar 

  6. Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005, 309(5739): 1387–1390

    CAS  Google Scholar 

  7. Whitman WB, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6578–6583

    CAS  Google Scholar 

  8. Dunbar J, Barns S M, Ticknor L O, Kuske C R. Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environmental Microbiology, 2002, 68(6): 3035–3045

    CAS  Google Scholar 

  9. Steward G F, Jenkins B D, Ward B B, Zehr J P. Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Applied and Environmental Microbiology, 2004, 70(3): 1455–1465

    CAS  Google Scholar 

  10. Jenkins B D, Steward G F, Short S M, Ward B B, Zehr J P. Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Applied and Environmental Microbiology, 2004, 70(3): 1767–1776

    CAS  Google Scholar 

  11. Warnecke P M, Stirzaker C, Melki J R, Millar D S, Paul C L, Clark S J. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Research, 1997, 25(21): 4422–4426

    CAS  Google Scholar 

  12. Lueders T, Friedrich M W. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Applied and Environmental Microbiology, 2003, 69(1): 320–326

    CAS  Google Scholar 

  13. Suzuki M T, Giovannoni S J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, 1996, 62(2): 625–630

    CAS  Google Scholar 

  14. Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467–470

    CAS  Google Scholar 

  15. Guschin D Y, Mobarry B K, Proudnikov D, Stahl D A, Rittmann B E, Mirzabekov A D. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Applied and Environmental Microbiology, 1997, 63(6): 2397–2402

    CAS  Google Scholar 

  16. Zhou J, Kang S, Schadt C W, Garten C T Jr. Spatial scaling of functional gene diversity across various microbial taxa. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(22): 7768–7773

    CAS  Google Scholar 

  17. He Z, Deng Y, Van Nostrand J D, Tu Q, Xu M, Hemme C L, Li X, Wu L, Gentry T J, Yin Y, Liebich J, Hazen T C, Zhou J. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. The ISME Journal, 2010, 4(9): 1167–1179

    CAS  Google Scholar 

  18. Wu L, Thompson D K, Li G, Hurt R A, Tiedje J M, Zhou J. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology, 2001, 67(12): 5780–5790

    CAS  Google Scholar 

  19. Rhee S K, Liu X, Wu L, Chong S C, Wan X, Zhou J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Applied and Environmental Microbiology, 2004, 70(7): 4303–4317

    CAS  Google Scholar 

  20. Gentry T J, Wickham G S, Schadt C W, He Z, Zhou J. Microarray applications in microbial ecology research. Microbial Ecology, 2006, 52(2): 159–175

    CAS  Google Scholar 

  21. He Z, Gentry T J, Schadt CW, Wu L, Liebich J, Chong S C, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. The ISME Journal, 2007, 1(1): 67–77

    CAS  Google Scholar 

  22. Taroncher-Oldenburg G, Griner E M, Francis C A, Ward B B. Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Applied and Environmental Microbiology, 2003, 69(2): 1159–1171

    CAS  Google Scholar 

  23. Zhang L, Hurek T, Reinhold-Hurek B. A nifH-based oligonucleotide microarray for functional diagnostics of nitrogen-fixing microorganisms. Microbial Ecology, 2007, 53(3): 456–470

    CAS  Google Scholar 

  24. Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C. Microarray-based detection and typing of the Rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Applied and Environmental Microbiology, 2005, 71(12): 8042–8048

    CAS  Google Scholar 

  25. Bodrossy L, Stralis-Pavese N, Murrell J C, Radajewski S, Weilharter A, Sessitsch A. Development and validation of a diagnostic microbial microarray for methanotrophs. Environmental Microbiology, 2003, 5(7): 566–582

    CAS  Google Scholar 

  26. Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell J C, Bodrossy L. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environmental Microbiology, 2004, 6(4): 347–363

    CAS  Google Scholar 

  27. Bodrossy L, Stralis-Pavese N, Konrad-Köszler M, Weilharter A, Reichenauer T G, Schöfer D, Sessitsch A. mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Applied and Environmental Microbiology, 2006, 72(2): 1672–1676

    CAS  Google Scholar 

  28. Miller S M, Tourlousse D M, Stedtfeld R D, Baushke SW, Herzog A B, Wick L M, Rouillard J M, Gulari E, Tiedje J M, Hashsham S A. In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Applied and Environmental Microbiology, 2008, 74(7): 2200–2209

    CAS  Google Scholar 

  29. Call D R, Bakko M K, Krug M J, Roberts M C. Identifying antimicrobial resistance genes with DNA microarrays. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3290–3295

    CAS  Google Scholar 

  30. Kostić T, Weilharter A, Sessitsch A, Bodrossy L. High-sensitivity, polymerase chain reaction-free detection of microorganisms and their functional genes using 70-mer oligonucleotide diagnostic microarray. Analytical Biochemistry, 2005, 346(2): 333–335

    Google Scholar 

  31. Cleven B E E, Palka-Santini M, Gielen J, Meembor S, Krönke M, Krut O. Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. Journal of Clinical Microbiology, 2006, 44(7): 2389–2397

    CAS  Google Scholar 

  32. Palka-Santini M, Cleven B E, Eichinger L, Krönke M, Krut O. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiology, 2009, 9(1): 1

    Google Scholar 

  33. Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J, Dai Z, Liu X. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. Journal of Microbiological Methods, 2007, 70(1): 165–178

    CAS  Google Scholar 

  34. Tiquia S M, Wu L, Chong S C, Passovets S, Xu D, Xu Y, Zhou J. Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. BioTechniques, 2004, 36(4): 664–670, 672, 674–675

    CAS  Google Scholar 

  35. Liang Y, He Z, Wu L, Deng Y, Li G, Zhou J. Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities. Applied and Environmental Microbiology, 2010, 76(4): 1088–1094

    CAS  Google Scholar 

  36. Zhou J, He Z, Van Nostrand J D, Wu L, Deng Y. Applying GeoChip analysis to disparate microbial communities. Microbe, 2010, 5: 60–65

    Google Scholar 

  37. Wilson K H, Blitchington R B, Greene R C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. Journal of Clinical Microbiology, 1990, 28(9): 1942–1946

    CAS  Google Scholar 

  38. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59(1): 143–169

    CAS  Google Scholar 

  39. Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 1995, 61(3): 1104–1109

    CAS  Google Scholar 

  40. Hugenholtz P, Goebel B M, Pace N R. Impact of cultureindependent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 1998, 180(18): 4765–4774

    CAS  Google Scholar 

  41. Brodie E L, Desantis T Z, Joyner D C, Baek S M, Larsen J T, Andersen G L, Hazen T C, Richardson P M, Herman D J, Tokunaga T K, Wan J M, Firestone M K. Application of a highdensity oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Applied and Environmental Microbiology, 2006, 72(9): 6288–6298

    CAS  Google Scholar 

  42. Liesegang H, Lemke K, Siddiqui R A, Schlegel H G. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. Journal of Bacteriology, 1993, 175(3): 767–778

    CAS  Google Scholar 

  43. Grass G, Grosse C, Nies D H. Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. Journal of Bacteriology, 2000, 182(5): 1390–1398

    CAS  Google Scholar 

  44. Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D. Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. Journal of Bacteriology, 2000, 182(5): 1399–1409

    CAS  Google Scholar 

  45. Nies D H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 2003, 27(2–3): 313–339

    CAS  Google Scholar 

  46. Saier M H Jr, Tam R, Reizer A, Reizer J. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Molecular Microbiology, 1994, 11(5): 841–847

    CAS  Google Scholar 

  47. Paulsen I T, Park J H, Choi P S, Saier M H Jr. A family of gramnegative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiology Letters, 1997, 156(1): 1–8

    CAS  Google Scholar 

  48. Eddy S R. Profile hidden Markov models. Bioinformatics (Oxford, England), 1998, 14(9): 755–763

    CAS  Google Scholar 

  49. Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22): 4673–4680

    CAS  Google Scholar 

  50. Li X, He Z, Zhou J. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Research, 2005, 33(19): 6114–6123

    CAS  Google Scholar 

  51. Liebich J, Schadt C W, Chong S C, He Z, Rhee S K, Zhou J. Improvement of oligonucleotide probe design criteria for functional gene microarrays in environmental applications. Applied and Environmental Microbiology, 2006, 72(2): 1688–1691

    CAS  Google Scholar 

  52. He Z, Wu L, Li X, Fields MW, Zhou J. Empirical establishment of oligonucleotide probe design criteria. Applied and Environmental Microbiology, 2005, 71(7): 3753–3760

    CAS  Google Scholar 

  53. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 2000, 7(1–2): 203–214

    CAS  Google Scholar 

  54. Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996, 62(2): 316–322

    CAS  Google Scholar 

  55. Hurt R A, Qiu X, Wu L, Roh Y, Palumbo A V, Tiedje J M, Zhou J. Simultaneous recovery of RNA and DNA from soils and sediments. Applied and Environmental Microbiology, 2001, 67(10): 4495–4503

    CAS  Google Scholar 

  56. Liang Y, Li G, Van Nostrand J D, He Z, Wu L, Deng Y, Zhang X, Zhou J. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiology Ecology, 2009, 70(2): 324–333

    CAS  Google Scholar 

  57. Ning J, Liebich J, Kästner M, Zhou J, Schäffer A, Burauel P. Different influences of DNA purity indices and quantity on PCRbased DGGE and functional gene microarray in soil microbial community study. Applied Microbiology and Biotechnology, 2009, 82(5): 983–993

    CAS  Google Scholar 

  58. Wu L, Liu X, Schadt C W, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Applied and Environmental Microbiology, 2006, 72(7): 4931–4941

    CAS  Google Scholar 

  59. Bürgmann H, Widmer F, Sigler W V, Zeyer J. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Applied and Environmental Microbiology, 2003, 69(4): 1928–1935

    Google Scholar 

  60. McGrath K C, Thomas-Hall S R, Cheng C T, Leo L, Alexa A, Schmidt S, Schenk P M. Isolation and analysis of mRNA from environmental microbial communities. Journal of Microbiological Methods, 2008, 75(2): 172–176

    CAS  Google Scholar 

  61. Gao H, Yang Z K, Gentry T J, Wu L, Schadt C W, Zhou J. Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Applied and Environmental Microbiology, 2007, 73(2): 563–571

    CAS  Google Scholar 

  62. He Z, Wu L, Fields M W, Zhou J. Use of microarrays with different probe sizes for monitoring gene expression. Applied and Environmental Microbiology, 2005, 71(9): 5154–5162

    CAS  Google Scholar 

  63. Van Nostrand J D, Wu W M, Wu L, Deng Y, Carley J, Carroll S, He Z, Gu B, Luo J, Criddle C S, Watson D B, Jardine PM, Marsh T L, Tiedje J M, Hazen T C, Zhou J. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environmental Microbiology, 2009, 11(10): 2611–2626

    Google Scholar 

  64. Waldron P J, Wu L, Van Nostrand J D, Schadt C W, He Z, Watson D B, Jardine P M, Palumbo A V, Hazen T C, Zhou J. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. Environmental Science & Technology, 2009, 43(10): 3529–3534

    CAS  Google Scholar 

  65. Mason O U, Di Meo-Savoie C A, Van Nostrand J D, Zhou J, Fisk M R, Giovannoni S J. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. The ISME Journal, 2009, 3(2): 231–242

    CAS  Google Scholar 

  66. He Z, Zhou J. Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis. Applied and Environmental Microbiology, 2008, 74(10): 2957–2966

    CAS  Google Scholar 

  67. He Z, Van Nostrand J D, Wu L, Zhou J. Development and application of functional gene arrays for microbial community analysis. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1319–1327

    CAS  Google Scholar 

  68. Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology, 2006, 87(1): 53–63

    Google Scholar 

  69. He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand J D, Hobbie S E, Reich P B, Zhou J. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecology Letters, 2010, 13(5): 564–575

    Google Scholar 

  70. ter Braak C J F. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 1986, 67(5): 1167–1179

    Google Scholar 

  71. Økland R H, Eilertsen O. Canonical correspondence analysis with variation partitioning: some comments and an application. Journal of Vegetation Science, 1994, 5(1): 117–126

    Google Scholar 

  72. Ramette A, Tiedje J M. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(8): 2761–2766

    CAS  Google Scholar 

  73. Yergeau E, Kang S, He Z, Zhou J, Kowalchuk G A. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. The ISME Journal, 2007, 1(2): 163–179

    CAS  Google Scholar 

  74. Wu L, Kellogg L, Devol A H, Tiedje J M, Zhou J. Microarraybased characterization of microbial community functional structure and heterogeneity in marine sediments from the Gulf of Mexico. Applied and Environmental Microbiology, 2008, 74(14): 4516–4529

    CAS  Google Scholar 

  75. Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Van Nostrand J D, Deng Y, He Z, Wu L, Zhou J, Xiao X. GeoChipbased analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4840–4845

    CAS  Google Scholar 

  76. Xiong J, Wu L, Tu S, Van Nostrand J D, He Z, Zhou J, Wang G. Microbial communities and functional genes associated with soil arsenic contamination and rhizosphere of the arsenic hyperaccumulating plant Pteris vittata L. Applied and Environmental Microbiology, 2010 (in press, AEM.00500-10)

  77. Liu W, Wang A, Cheng S, Logan B E, Yu H, Deng Y, Nostrand J D V, Wu L, He Z, Zhou J. Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes. Environmental Science & Technology, 2010, 44(19): 7729–7735

    CAS  Google Scholar 

  78. Dennis P, Edwards E A, Liss S N, Fulthorpe R. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Applied and Environmental Microbiology, 2003, 69(2): 769–778

    CAS  Google Scholar 

  79. Deng Y, He Z, Van Nostrand J D, Zhou J. Design and analysis of mismatch probes for long oligonucleotide microarrays. BMC Genomics, 2008, 9(1): 491

    Google Scholar 

  80. Chen Q, Yin H, Luo H, Xie M, Qiu G, Liu X. Micro-array based whole-genome hybridization for detection of microorganisms in acid mine drainage and bioleaching systems. Hydrometallurgy, 2009, 95(1–2): 96–103

    CAS  Google Scholar 

  81. Denef V J, Park J, Rodrigues J L M, Tsoi T V, Hashsham S A, Tiedje JM. Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environmental Microbiology, 2003, 5(10): 933–943

    CAS  Google Scholar 

  82. Relógio A, Schwager C, Richter A, Ansorge W, Valcárcel J. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Research, 2002, 30(11): e51

    Google Scholar 

  83. Cho J C, Tiedje J M. Quantitative detection of microbial genes by using DNA microarrays. Applied and Environmental Microbiology, 2002, 68(3): 1425–1430

    CAS  Google Scholar 

  84. Zhou J, Thompson D K. Challenges in applying microarrays to environmental studies. Current Opinion in Biotechnology, 2002, 13(3): 204–207

    CAS  Google Scholar 

  85. Schaupp C J, Jiang G, Myers T G, Wilson M A. Active mixing during hybridization improves the accuracy and reproducibility of microarray results. BioTechniques, 2005, 38(1): 117–119

    CAS  Google Scholar 

  86. Zhou X C, Wu L Y, Zhou J Z. Fabrication of DNA microarrays on nanoengineered polymeric ultrathin film prepared by self-assembly of polyelectrolyte multilayers. Langmuir, 2004, 20(20): 8877–8885

    CAS  Google Scholar 

  87. Branham WS, Melvin C D, Han T, Desai V G, Moland C L, Scully A T, Fuscoe J C. Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements. BMC Biotechnology, 2007, 7(1): 8

    Google Scholar 

  88. Kumar A, Larsson O, Parodi D, Liang Z. Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Research, 2000, 28(14): e71

    CAS  Google Scholar 

  89. Gudnason H, Dufva M, Duong Bang D, Wolff A. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes. BioTechniques, 2008, 45(3): 261–271

    CAS  Google Scholar 

  90. DeSantis T Z, Brodie E L, Moberg J P, Zubieta I X, Piceno Y M, Andersen G L. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecology, 2007, 53(3): 371–383

    Google Scholar 

  91. Leigh M B, Pellizari V H, UhlÍk O, Sutka R, Rodrigues J, Ostrom N E, Zhou J, Tiedje J M. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). The ISME Journal, 2007, 1(2): 134–148

    CAS  Google Scholar 

  92. Gu B, Brooks S C, Roh Y, Jardine PM. Geochemical reactions and dynamics during titration of a contaminated groundwater with high uranium, aluminum, and calcium. Geochimica et Cosmochimica Acta, 2003, 67(15): 2749–2761

    CAS  Google Scholar 

  93. Wu W M, Carley J, Gentry T, Ginder-Vogel M A, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace M N, Nyman J, Luo J, Gentile ME, Fields MW, Hickey R F, Gu B, Watson D, Cirpka O A, Zhou J, Fendorf S, Kitanidis P K, Jardine PM, Criddle C S. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability. Environmental Science & Technology, 2006, 40(12): 3986–3995

    CAS  Google Scholar 

  94. Wu W M, Carley J, Luo J, Ginder-Vogel M A, Cardenas E, Leigh M B, Hwang C, Kelly S D, Ruan C, Wu L, Van Nostrand J D, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields MW, Gu B, Watson D, Kemner K M, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environmental Science & Technology, 2007, 41(16): 5716–5723

    CAS  Google Scholar 

  95. Xu M, Wu W M, Wu L, He Z, Van Nostrand J D, Deng Y, Luo J, Carley J, Ginder-Vogel M, Gentry T J, Gu B, Watson D, Jardine P M, Marsh T L, Tiedje J M, Hazen T, Criddle C S, Zhou J. Responses of microbial community functional structures to pilotscale uranium in situ bioremediation. The ISME Journal, 2010, 4(8): 1060–1070

    Google Scholar 

  96. Tas N, van Eekert M H, Schraa G, Zhou J, de Vos W M, Smidt H. Tracking functional guilds: “Dehalococcoides” spp. in European river basins contaminated with hexachlorobenzene. Applied and Environmental Microbiology, 2009, 75(14): 4696–4704

    CAS  Google Scholar 

  97. Kimes N E, Van Nostrand J D, Weil E, Zhou J, Morris P J. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environmental Microbiology, 2010, 12(2): 541–556

    CAS  Google Scholar 

  98. Zhang Y, Zhang X, Liu X, Xiao Y, Qu L, Wu L, Zhou J. Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes. FEMS Microbiology Letters, 2007, 266(2): 144–151

    CAS  Google Scholar 

  99. Lawton J H. Are there general laws in ecology? Oikos, 1999, 84(2): 177–192

    Google Scholar 

  100. Reich P B, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 2001, 410(6830): 809–812

    CAS  Google Scholar 

  101. Parnell J J, Rompato G, Latta L C I V 4th, Pfrender M E, Van Nostrand J D, He Z, Zhou J, Andersen G, Champine P, Ganesan B, Weimer B C, Aziz R K. Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS ONE, 2010, 5(9): e12919

    Google Scholar 

  102. Xie J, He Z, Liu X, Liu X, Van Nostrand J D, Deng Y, Wu L, Qiu G, Zhou J. Geochip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Applied and Environmental Microbiology, 2010

  103. Rodríguez-Martínez EM, Pérez E X, Schadt CW, Zhou J, Massol-Deyá A A. Microbial diversity and bioremediation of a hydrocarbon-contaminated aquifer (Vega Baja, Puerto Rico). International Journal of Environmental Research and Public Health, 2006, 3(3): 292–300

    Google Scholar 

  104. Liang Y, Nostrand J D V, Wang J, Zhang X, Zhou J, Li G. Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil. Chemosphere, 2009, 75(2): 193–199

    CAS  Google Scholar 

  105. Liang Y, Van Nostrand J D, Deng Y, He Z, Wu L, Zhang X, Li G, Zhou J. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. The ISME Journal, 2010, (in press)

  106. Hazen T C, Dubinsky E A, DeSantis T Z, Andersen G L, Piceno Y M, Singh N, Jansson J K, Probst A, Borglin S E, Fortney J L, Stringfellow W T, Bill M, Conrad M E, Tom L M, Chavarria K L, Alusi T R, Lamendella R, Joyner D C, Spier C, Baelum J, Auer M, Zemla M L, Chakraborty R, Sonnenthal E L, D’haeseleer P, Holman H Y N, Osman S, Lu Z, Van Nostrand J D, Deng Y, Zhou J, Mason O U. Deep-sea oil plume enriches indigenous oildegrading bacteria. Science, 2010, 330(6001): 204–208

    CAS  Google Scholar 

  107. Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer ML, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan MT, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. Genome sequencing in microfabricated highdensity picolitre reactors. Nature, 2005, 437(7057): 376–380

    CAS  Google Scholar 

  108. Binladen J, Gilbert M T P, Bollback J P, Panitz F, Bendixen C, Nielsen R, Willerslev E, Hahn M. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE, 2007, 2(2): e197

    Google Scholar 

  109. Hamady M, Walker J J, Harris J K, Gold N J, Knight R. Errorcorrecting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods, 2008, 5(3): 235–237

    CAS  Google Scholar 

  110. Iwai S, Chai B, Sul W J, Cole J R, Hashsham S A, Tiedje J M. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. The ISME Journal, 2010, 4(2): 279–285

    CAS  Google Scholar 

  111. Qin J, Li R, Raes J, Arumugam M, Burgdorf K S, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich S D, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59–65

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhong Zhou.

Additional information

Jizhong Zhou is a Presidential Professor in the Department of Botany and Microbiology and Director for the Institute for Environmental Genomics, University of Oklahoma, Norman, OK, Adjunct Senior Scientist at Lawrence Berkeley National Laboratory, and Adjunct Professor at Tsinghua University, Beijing, China. He received a B.S. in Plant Pathology and Entomology in 1981, an M.S. in Insect Mathematical Ecology in 1984 from Hunan Agricultural University, China, and a Ph.D. in Molecular Genetics and Cell Biology in 1993 from Washington State University. He studied theoretical ecology and ecosystem modeling for three years at the Eco-Environmental Research Center, Chinese Academy of Sciences, Beijing, China. He worked at the Center for Microbial Ecology, Michigan State University, from 1993 to 1995 as a Postdoctoral Research Associate with James Tiedje. Before moving to OU in 2005, he worked at Oak Ridge National Laboratory as a Staff Scientist, Senior Staff Scientist, and then Distinguished Staff Scientist for 10 years. His expertise is in molecular biology, microbial genomics, microbial ecology, molecular evolution, theoretical ecology and genomic technologies. His laboratory has pioneered the development and use of genomic technologies for environmental studies in which GeoChip was awarded a 2009 R&D100 Award. He received a Presidential Early Career Award for Scientists and Engineers in 2001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z., Van Nostrand, J.D., Deng, Y. et al. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Front. Environ. Sci. Eng. China 5, 1–20 (2011). https://doi.org/10.1007/s11783-011-0301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-011-0301-y

Keywords

Navigation