Skip to main content
Log in

Influence of graphite Gibbs surface free energy on the initial viscosity and stability of traditional anode slurry in lithium-ion batteries

石墨Gibbs 表面自由能对锂离子电池传统负极浆初始黏度和稳定性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The initial viscosity and stability of anode slurry are important for the manufacturing process and later the lithium-ion battery’s performance. The impact of the physical properties of graphite feed material on the anode slurry’s initial viscosity and stability is fundamentally unclarified. In this study, it is discovered that the initial viscosity of an anode slurry is positively associated with non-polar part of its Gibbs surface free energy and linear independence between them is established after slurry’s viscosity test of commercial graphite with different particle size and specific surface area. It is also discovered that the anode slurry’s stability is affected by the relative size of a polar and non-polar part of Gibbs surface free energy. The slurry reveals the best stability and good specific capacity retention after >120 h rest time when polar Gibbs surface free energy is close to the non-polar part. Interestingly, there is no direct linear relationship between Gibbs surface free energy and defect of graphite particles characterized using XRD and Raman spectra. This study guides how to select graphite raw materials in the industrial production of lithium-ion batteries.

摘要

负极浆料的初始黏度和稳定性对锂离子电池的生产工艺和后期性能至关重要。但是关于石墨原料的理化性质对负极浆料初始黏度和稳定性的影响尚未从根本上阐明。通过对不同粒度和比表面积的商业化石墨进行初始黏度测试, 发现负极浆料的初始黏度与石墨的非极性Gibbs 表面自由能呈正相关。同时还发现, Gibbs 表面自由能极性部分和非极性部分的相对大小对负极浆料的稳定性有影响。当Gibbs 表面自由能极性部分接近非极性部分时, 制备的浆料具有最佳的稳定性, 且静置120 h 以后克容量保持稳定。有趣的是, XRD 和Raman 光谱表征结果显示石墨粒子的Gibbs 表面自由能与缺陷之间没有直接的线性关系。本研究可为锂离子电池工业生产中石墨原料的选择提供指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. KIM T H, PARK J S, CHANG S K, et al. The current move of lithium ion batteries towards the next phase [J]. Advanced Energy Materials, 2012, 2(7): 860–872. DOI: https://doi.org/10.1002/aenm.201200028.

    Article  Google Scholar 

  2. TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359–367. DOI: https://doi.org/10.1038/35104644.

    Article  Google Scholar 

  3. CHOI J W, AURBACH D. Promise and reality of postlithium-ion batteries with high energy densities [J]. Nature Reviews Materials, 2016, 1: 16013. DOI: https://doi.org/10.1038/natrevmats.2016.13.

    Article  Google Scholar 

  4. TOMASZEWSKA A, CHU Zheng-yu, FENG Xu-ning, et al. Lithium-ion battery fast charging: A review [J]. eTransportation, 2019, 1: 100011. DOI: https://doi.org/10.1016/j.etran.2019.100011.

    Article  Google Scholar 

  5. LIU Yang-tao, ZHANG Rui-han, WANG Jun, et al. Current and future lithium-ion battery manufacturing [J]. iScience, 2021, 24(4): 102332. DOI: https://doi.org/10.1016/j.isci.2021.102332.

    Article  Google Scholar 

  6. HOU Jun-xian, FENG Xu-ning, WANG Li, et al. Unlocking the self-supported thermal runaway of high-energy lithiumion batteries [J]. Energy Storage Materials, 2021, 39: 395–402. DOI: https://doi.org/10.1016/j.ensm.2021.04.035.

    Article  Google Scholar 

  7. BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries [J]. Angewandte Chemie (International Ed in English), 2008, 47(16): 2930–2946. DOI: https://doi.org/10.1002/anie.200702505.

    Article  Google Scholar 

  8. GUO Yu-guo, HU Jin-song, WAN Li-jun. Nanostructured materials for electrochemical energy conversion and storage devices [J]. Advanced Materials, 2008, 20(15): 2878–2887. DOI: https://doi.org/10.1002/adma.200800627.

    Article  Google Scholar 

  9. LI Hong, WANG Zhao-xiang, CHEN Li-quan, et al. Research on advanced materials for Li-ion batteries [J]. Advanced Materials, 2009, 21(45): 4593–4607. DOI: https://doi.org/10.1002/adma.200901710.

    Article  Google Scholar 

  10. JEONG G, KIM Y U, KIM H, et al. Prospective materials and applications for Li secondary batteries [J]. Energy & Environmental Science, 2011, 4(6): 1986–2002. DOI: https://doi.org/10.1039/C0EE00831A.

    Article  Google Scholar 

  11. SHIMOI N, KOMATSU M. Application of exfoliated graphene as conductive additive for lithium-ion secondary batteries [J]. Powder Technology, 2021, 390: 268–272. DOI: https://doi.org/10.1016/j.powtec.2021.05.039.

    Article  Google Scholar 

  12. JIANG Zhi-peng, ZHAO Yu-ming, LU Xing, et al. Fullerenes for rechargeable battery applications: Recent developments and future perspectives [J]. Journal of Energy Chemistry, 2021, 55: 70–79. DOI: https://doi.org/10.1016/j.jechem.2020.06.065.

    Article  Google Scholar 

  13. EDER D. Carbon nanotube-inorganic hybrids [J]. Chemical Reviews, 2010, 110(3): 1348–1385. DOI: https://doi.org/10.1021/cr800433k.

    Article  Google Scholar 

  14. de LAS CASAS C, LI Wen-zhi. A review of application of carbon nanotubes for lithium ion battery anode material [J]. Journal of Power Sources, 2012, 208: 74–85. DOI: https://doi.org/10.1016/j.jpowsour.2012.02.013.

    Article  Google Scholar 

  15. DAI Li-ming, CHANG D W, BAEK J B, et al. Carbon nanomaterials for advanced energy conversion and storage [J]. Small (Weinheim an Der Bergstrasse, Germany), 2012, 8(8): 1130–1166. DOI: https://doi.org/10.1002/smll.201101594.

    Article  Google Scholar 

  16. TANG Kun, WHITE R J, MU Xiao-ke, et al. Hollow carbon nanospheres with a high rate capability for lithium-based batteries [J]. Chem Sus Chem, 2012, 5(2): 400–403. DOI: https://doi.org/10.1002/cssc.201100609.

    Article  Google Scholar 

  17. KASKHEDIKAR N A, MAIER J. Lithium storage in carbon nanostructures [J]. Advanced Materials, 2009, 21(25–26): 2664–2680. DOI: https://doi.org/10.1002/adma.200901079.

    Article  Google Scholar 

  18. WANG Qian, XIE Zhi-yong, LIANG Yi-li, et al. Facile synthesis of boron-doped porous carbon as anode for lithiumion batteries with excellent electrochemical performance [J]. Ionics, 2019, 25(5): 2111–2119. DOI: https://doi.org/10.1007/s11581-018-2647-7.

    Article  Google Scholar 

  19. HUANG Peng, LIU Bei, ZHANG Jia-li, et al. Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium-ion batteries [J]. Ionics, 2021, 27(5): 1957–1966. DOI: https://doi.org/10.1007/s11581-021-03977-3.

    Article  Google Scholar 

  20. LIU Bei, HUANG Peng, ZHANG Qi, et al. Rational-design micro-nanostructure of porous carbon film/silicon nanowire/graphite microsphere composites for high-performance lithium-ion batteries [J]. Journal of Materials Science, 2020, 55(26): 12165–12176. DOI: https://doi.org/10.1007/s10853-020-04869-z.

    Article  Google Scholar 

  21. WANG Fei, YI Jin, WANG Yong-gang, et al. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries [J]. Advanced Energy Materials, 2014, 4(2): 1300600. DOI: https://doi.org/10.1002/aenm.201300600.

    Article  Google Scholar 

  22. LI Peng, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries [J]. Energy Storage Materials, 2021, 35: 550–576. DOI: https://doi.org/10.1016/j.ensm.2020.11.028.

    Article  Google Scholar 

  23. NIRMALE T C, KALE B B, VARMA A J. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery [J]. International Journal of Biological Macromolecules, 2017, 103: 1032–1043. DOI: https://doi.org/10.1016/j.ijbiomac.2017.05.155.

    Article  Google Scholar 

  24. ZHAO Yun, LIANG Zheng, KANG Yu-qiong, et al. Rational design of functional binder systems for high-energy lithium-based rechargeable batteries [J]. Energy Storage Materials, 2021, 35: 353–377. DOI: https://doi.org/10.1016/j.ensm.2020.11.021.

    Article  Google Scholar 

  25. LEE J H, PAIK U, HACKLEY V A, et al. Effect of poly (acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries [J]. Journal of Power Sources, 2006, 161(1): 612–616. DOI: https://doi.org/10.1016/j.jpowsour.2006.03.087.

    Article  Google Scholar 

  26. QIU Lei, SHAO Zi-qiang, WANG Da-xiong, et al. Carboxymethyl cellulose lithium (CMC-Li) as a novel binder and its electrochemical performance in lithium-ion batteries [J]. Cellulose, 2014, 21(4): 2789–2796. DOI: https://doi.org/10.1007/s10570-014-0274-7.

    Article  Google Scholar 

  27. QIU Lei, SHAO Zi-qiang, YANG Ming-shan, et al. Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery [J]. Carbohydrate Polymers, 2013, 96(1): 240–245. DOI: https://doi.org/10.1016/j.carbpol.2013.03.062.

    Article  Google Scholar 

  28. LEE J H, PAIK U, HACKLEY V A, et al. Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries [J]. Journal of the Electrochemical Society, 2005, 152(9): A1763. DOI: https://doi.org/10.1149/1.1979214.

    Article  Google Scholar 

  29. WEI Liang-ming, CHEN Chang-xin, HOU Zhong-yu, et al. Poly(acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries [J]. Scientific Reports, 2016, 6: 19583. DOI: https://doi.org/10.1038/srep19583.

    Article  Google Scholar 

  30. COSTA C M, LIZUNDIA E, LANCEROS-MÉNDEZ S. Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components [J]. Progress in Energy and Combustion Science, 2020, 79: 100846. DOI: https://doi.org/10.1016/j.pecs.2020.100846.

    Article  Google Scholar 

  31. MOURSHED M, NIYA S M R, OJHA R, et al. Carbon-based slurry electrodes for energy storage and power supply systems [J]. Energy Storage Materials, 2021, 40: 461–489. DOI: https://doi.org/10.1016/j.ensm.2021.05.032.

    Article  Google Scholar 

  32. VICKERS D, ARCHER L A, FLOYD-SMITH T. Synthesis and characterization of cubic cobalt oxide nanocomposite fluids [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348(1–3): 39–44. DOI: https://doi.org/10.1016/j.colsurfa.2009.06.025.

    Article  Google Scholar 

  33. ZHU Hai-tao, LI Chang-jiang, WU Da-xiong, et al. Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids [J]. Science China Technological Sciences, 2010, 53(2): 360–368. DOI: https://doi.org/10.1007/s11431-010-0032-5.

    Article  Google Scholar 

  34. SJOBERG L E, NAHAVANDCHI H. The atmospheric geoid effects in Stokes’ formula [J]. Geophysical Journal International, 2000, 140(1): 95–100. DOI: https://doi.org/10.1046/j.1365-246x.2000.00995.x

    Article  Google Scholar 

  35. HE Shao-yang, ZENG Jian-bang, HABTE B T, et al. Numerical reconstruction of microstructure of graphite anode of lithium-ion battery [J]. Science Bulletin, 2016, 61(8): 656–664. DOI: https://doi.org/10.1007/s11434-016-1048-4.

    Article  Google Scholar 

  36. MA Fu-duo, FU Yan-bao, BATTAGLIA V, et al. Microrheological modeling of lithium ion battery anode slurry [J]. Journal of Power Sources, 2019, 438: 226994. DOI: https://doi.org/10.1016/j.jpowsour.2019.226994.

    Article  Google Scholar 

  37. CHEN Xiao-bin, TIAN Fu-yang, PERSSON C, et al. Interlayer interactions in graphites [J]. Scientific Reports, 2013, 3: 3046. DOI: https://doi.org/10.1038/srep03046.

    Article  Google Scholar 

  38. CHARLIER J C, GONZE X, MICHENAUD J P. Graphite interplanar bonding: Electronic delocalization and van der waals interaction [J]. Europhysics Letters (EPL), 1994, 28(6): 403–408. DOI: https://doi.org/10.1209/0295-5075/28/6/005.

    Article  Google Scholar 

  39. ABRAHAMSON J. The surface energies of graphite [J]. Carbon, 1973, 11(4): 337–362. DOI: https://doi.org/10.1016/0008-6223(73)90075-4.

    Article  Google Scholar 

  40. BLACKMAN L C F. Modern aspects of graphite technology [M]. Academic Press, 1970.

  41. ANDERSEN H L, DJUANDHI L, MITTAL U, et al. Strategies for the analysis of graphite electrode function [J]. Advanced Energy Materials, 2021, 11(48): 2102693. DOI: https://doi.org/10.1002/aenm.202102693.

    Article  Google Scholar 

  42. YIN Li, DENG Chuan, DENG Fei, et al. Analysis of the interaction energies between and within graphite particles during mechanical exfoliation [J]. New Carbon Materials, 2018, 33(5): 449–459. DOI: https://doi.org/10.1016/S1872-5805(18)60351-8.

    Article  Google Scholar 

  43. GOEBEL M O, BACHMANN J, WOCHE S K, et al. Water potential and aggregate size effects on contact angle and surface energy [J]. Soil Science Society of America Journal, 2004, 68(2): 383–393. DOI: https://doi.org/10.2136/sssaj2004.3830.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Xie  (谢志勇).

Additional information

Contributors

ZHOU Qi developed the overarching research goals and wrote and edited the draft of manuscript. WEN Bo conducted the literature review and edited the manuscript. Others edited the manuscript.

Foundation item

Project(SKL-SPM-202003) supported by the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, China; Project(1920001004360) supported by the Foshan Science and Technology Innovation Program, China

Conflict of interest

ZHOU Qi, WEN Bo, ZHANG Jia-li, LIU Feng, LIANG Yi-li, WU Ze-yi, OUYANG Xiaoping and XIE Zhi-yong declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Wen, B., Zhang, Jl. et al. Influence of graphite Gibbs surface free energy on the initial viscosity and stability of traditional anode slurry in lithium-ion batteries. J. Cent. South Univ. 30, 665–676 (2023). https://doi.org/10.1007/s11771-023-5250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5250-7

Key words

关键词

Navigation