Skip to main content
Log in

Rockburst prediction model using machine learning based on microseismic parameters of Qinling water conveyance tunnel

基于秦岭输水隧洞微震参数的机器学习岩爆预测模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The frequency and intensity of rockburst in underground engineering have increased with excavation depth. In order to predict rockburst intensity grade, this paper introduces six machine learning algorithms to establish six rockburst prediction models. Based on 289-day microseismic monitoring data and rockburst events of Qinling water conveyance tunnel, the rockburst intensity grade prediction dataset is constructed. In the process of model establishment, the impact of data imbalance on model performance is discussed first, and it is concluded that Borderline-SMOTE1 is the most effective method to eliminate data imbalance. Secondly, the analysis of six models’ performance indicators shows that the rockburst prediction model based on the Adaboost algorithm has the best performance, with the highest accuracy, macro-F1, and micro-F1, which are 0.938, 0.937, and 0.938, respectively. Finally, the Borderline-SMOTE1-Adaboost model was applied to the prediction of the rockburst intensity grade of Qinling water conveyance tunnel from June 1, 2020 to June 10, 2020. All ten strong rockbursts are accurately predicted, which verifies the effectiveness of predicting rockburst intensity grade through microseismic parameters. The results show that the Borderline-SMOTE1-Adaboost rockburst prediction model can provide a reference for the early warning of rockburst disasters during the construction of deep-buried tunnels.

摘要

随着地下工程不断向深部发展,岩爆的频次和强度日益增加。为了实现对岩爆烈度等级的预 测,本文引入6 种机器学习算法,建立了6 个岩爆预测模型。以秦岭输水隧洞工程289 天的微震监测数 据与岩爆案例为基础,构建岩爆烈度等级预测数据集。在建模过程中,首先讨论了数据不均衡对模型 性能的影响,得出Borderline-SMOTE1 是消除数据不均衡最有效的方法。其次,对6 个模型性能指标 进行分析,发现Adaboost 算法的岩爆预测模型性能最好,其精度、宏F1值、微F1值均最高,分别为 0.938、0.937 和0.938。最后将Borderline-SMOTE1-Adaboost 岩爆预测模型应用于秦岭输水隧洞工程 2020 年6 月1 日至2020 年6 月10 日的岩爆烈度等级预测,10 次强烈岩爆均被准确预测,验证了通过微 震参数来预测岩爆烈度等级的有效性,表明了Borderline-SMOTE1-Adaboost 岩爆预测模型可为深埋隧 道施工过程中岩爆灾害的预警提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LI Peng-xiang, FENG Xia-ting, FENG Guang-liang, et al. Rockburst and microseismic characteristics around lithological interfaces under different excavation directions in deep tunnels [J]. Engineering Geology, 2019, 260: 105209. DOI: https://doi.org/10.1016/j.enggeo.2019.105209.

    Article  Google Scholar 

  2. PU Yuan-yuan, APEL D B, XU Hua-wei. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier [J]. Tunnelling and Underground Space Technology, 2019, 90: 12–18. DOI: https://doi.org/10.1016/j.tust.2019.04.019.

    Article  Google Scholar 

  3. LI Xiang, MAO Hao-yu, LI Biao, et al. Dynamic early warning of rockburst using microseismic multi-parameters based on Bayesian network [J]. Engineering Science and Technology, an International Journal, 2021, 24(3): 715–727. DOI: https://doi.org/10.1016/j.jestch.2020.10.002.

    Article  MathSciNet  Google Scholar 

  4. XUE Yi-guo, BAI Cheng-hao, KONG Fan-meng, et al. A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria [J]. Engineering Geology, 2020, 268: 105515. DOI: https://doi.org/10.1016/j.enggeo.2020.105515.

    Article  Google Scholar 

  5. HOCK E, BROWN E T. Underground excavation in rock [M]. London: The Institute of Mining and Metallurgy, 1980: 382–395.

    Google Scholar 

  6. RUSSENES B F. Analysis of rock spalling for tunnels in steep valley sides [D]. Norwegian Institute of Technology, 1974. (in Nonvegian)

  7. KIDYBIŃSKI A. Bursting liability indices of coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 295–304. DOI: https://doi.org/10.1016/0148-9062(81)91194-3.

    Article  Google Scholar 

  8. WANG Yuan-han, LI Wo-dong, LEE P K K, et al. Method of fuzzy comprehensive evaluations for rockburst prediction [J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 15–23. (in Chinese)

    Google Scholar 

  9. XU Chen, LIU Xiao-li, WANG En-zhi, et al. Rockburst prediction and classification based on the ideal-point method of information theory [J]. Tunnelling and Underground Space Technology, 2018, 81: 382–390. DOI: https://doi.org/10.1016/j.tust.2018.07.014.

    Article  Google Scholar 

  10. QIU Dao-hong, LI Shu-cai, ZHANG Le-wen. Study on rockburst intensity prediction based on efficacy coefficient method [J]. Applied Mechanics and Materials, 2013, 353–356: 1277–1280. DOI: https://doi.org/10.4028/www.scientific.net/amm.353-356.1277.

    Article  Google Scholar 

  11. ZHANG Le-wen, ZHANG Xiang-yu, WU Jing, et al. Rockburst prediction model based on comprehensive weight and extension methods and its engineering application [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9): 4891–4903. DOI: https://doi.org/10.1007/s10064-020-01861-4.

    Article  Google Scholar 

  12. ZHOU Hang, CHEN Shi-kuo, LI Han-rui, et al. Rockburst prediction for hard rock and deep-lying long tunnels based on the entropy weight ideal point method and geostress field inversion: A case study of the Sangzhuling Tunnel [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(5): 3885–3902. DOI: https://doi.org/10.1007/s10064-021-02175-9.

    Article  Google Scholar 

  13. LIU Fei, TANG Chun-an, MA Tian-hui, et al. Characterizing rockbursts along a structural plane in a tunnel of the Hanjiang-to-Weihe River diversion project by microseismic monitoring [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1835–1856. DOI: https://doi.org/10.1007/s00603-018-1649-0.

    Article  Google Scholar 

  14. GU Shi-tan, WANG Chun-qiu, JIANG Bang-you, et al. Field test of rock burst danger based on drilling pulverized coal parameters [J]. Disaster Advances, 2012, 5(4): 237–240.

    Google Scholar 

  15. LIU Cheng-yu, LI Hong-jun, YU Shi-wei, et al. Rockburst prediction technology combining rock mass structure analysis and electromagnetic emission monitoring: A case study of Uzbekistan Kamchik tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 349–358. (in Chinese)

    Google Scholar 

  16. PU Yuan-yuan, APEL D B, LIU V, et al. Machine learning methods for rockburst prediction-state-of-the-art review [J]. International Journal of Mining Science and Technology, 2019, 29(4): 565–570. DOI: https://doi.org/10.1016/j.ijmst.2019.06.009.

    Article  Google Scholar 

  17. FENG Xia-ting, ZHAO Hong-bo. Prediction of rockburst using support vector machine [J]. Journal of Northeastern University, 2002(1): 57–59. (in Chinese)

  18. GE Qi-fa, FENG Xia-ting. Classification and prediction of rockburst using AdaBoost combination learning method [J]. Rock and Soil Mechanics, 2008(4): 943–948. DOI: https://doi.org/10.16285/j.rsm.2008.04.031. (in Chinese)

  19. WANG Yan-bin. Prediction of rockburst risk in coal mines based on a locally weighted C4.5 algorithm [J]. IEEE Access, 2021, 9: 15149–15155. DOI: https://doi.org/10.1109/ACCESS.2021.3053001.

    Article  Google Scholar 

  20. WU Tian-hua, GAO Yong-tao, ZHOU Yu, et al. A novel comprehensive quantitative method for various geological disaster evaluations in underground engineering: Multidimensional finite interval cloud model (MFICM) [J]. Environmental Earth Sciences, 2021, 80(20): 1–18. DOI: https://doi.org/10.1007/s12665-021-10012-1.

    Article  Google Scholar 

  21. KE Bo, KHANDELWAL M, ASTERIS P G, et al. Rock-burst occurrence prediction based on optimized naïve Bayes models [J]. IEEE Access, 2021, 9: 91347–91360. DOI: https://doi.org/10.1109/ACCESS.2021.3089205.

    Article  Google Scholar 

  22. XUE Yi-guo, BAI Cheng-hao, QIU Dao-hong, et al. Predicting rockburst with database using particle swarm optimization and extreme learning machine [J]. Tunnelling and Underground Space Technology, 2020, 98: 103287. DOI: https://doi.org/10.1016/j.tust.2020.103287.

    Article  Google Scholar 

  23. WU Shun-chuan, WU Zhong-guang, ZHANG Chen-xi. Rock burst prediction probability model based on case analysis [J]. Tunnelling and Underground Space Technology, 2019, 93: 103069. DOI: https://doi.org/10.1016/j.tust.2019.103069.

    Article  Google Scholar 

  24. TANG Zhi-li, WANG Xue, XU Qian-jun. Rockburst prediction based on oversampling and objective weighting method [J]. Journal of Tsinghua University (Science and Technology), 2021, 61(6): 543–555. (in Chinese)

    Google Scholar 

  25. PAPADOPOULOS D, BENARDOS A. Enhancing machine learning algorithms to assess rock burst phenomena [J]. Geotechnical and Geological Engineering, 2021, 39(8): 5787–5809. DOI: https://doi.org/10.1007/s10706-021-01867-z.

    Article  Google Scholar 

  26. YIN Xin, LIU Quan-sheng, HUANG Xing, et al. Real-time prediction of rockburst intensity using an integrated CNN-Adam-BO algorithm based on microseismic data and its engineering application [J]. Tunnelling and Underground Space Technology, 2021, 117: 104133. DOI: https://doi.org/10.1016/j.tust.2021.104133.

    Article  Google Scholar 

  27. YIN Xin, LIU Quan-sheng, PAN Yu-cong, et al. Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models [J]. Natural Resources Research, 2021, 30(2): 1795–1815. DOI: https://doi.org/10.1007/s11053-020-09787-0.

    Article  Google Scholar 

  28. ZHOU Jian, LI Xi-bing, MITRI H S. Evaluation method of rockburst: State-of-the-art literature review [J]. Tunnelling and Underground Space Technology, 2018, 81: 632–659. DOI: https://doi.org/10.1016/j.tust.2018.08.029.

    Article  Google Scholar 

  29. TANG Zhi-li, XU Qian-jun. Rockburst prediction based on nine machine learning algorithms [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 773–781. (in Chinese)

    Google Scholar 

  30. FENG Guang-liang, FENG Xia-ting, CHEN Bing-rui, et al. A microseismic method for dynamic warning of rockburst development processes in tunnels [J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2061–2076. DOI: https://doi.org/10.1007/s00603-014-0689-3.

    Article  Google Scholar 

  31. LI Guang-kuan. Rockburst prediction based on neural network and microseismic information [D]. Shenyang: Northeastern University, 2011. (in Chinese)

    Google Scholar 

  32. SENATORSKI P. Apparent stress scaling and statistical trends [J]. Physics of the Earth and Planetary Interiors, 2007, 160(3–4): 230–244. DOI: https://doi.org/10.1016/j.pepi.2006.11.007.

    Article  Google Scholar 

  33. LIU Jian-po, FENG Xia-ting, LI Yuan-hui, et al. Studies on temporal and spatial variation of microseismic activities in a deep metal mine [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 171–179. DOI: https://doi.org/10.1016/j.ijrmms.2012.12.022.

    Article  Google Scholar 

  34. ZORN E, HAMMACK R, HARBERT W, et al. Geomechanical lithology-based analysis of microseismicity in organic shale sequences: A Pennsylvania Marcellus Shale example [J]. The Leading Edge, 2017, 36(10): 845–851. DOI: https://doi.org/10.1190/tle36100845.1.

    Article  Google Scholar 

  35. GUTENBERG B, RICHTER C F. Frequency of earthquakes in California [J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185–188. DOI: https://doi.org/10.1785/bssa0340040185.

    Article  Google Scholar 

  36. HOODA S, MANN S. Distributed synthetic minority oversampling technique [J]. International Journal of Computational Intelligence Systems, 2019, 12(2): 929–936. DOI: https://doi.org/10.2991/ijcis.d.190719.001.

    Article  Google Scholar 

  37. HAN Hui, WANG Wen-yuan, MAO Bing-huan. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning [C]// Advances in Intelligent Computing. 2005, 3664: 878–887. DOI: https://doi.org/10.1007/11538059_91.

    Article  Google Scholar 

  38. NGUYEN H M, COOPER E W, KAMEI K. Borderline over-sampling for imbalanced data classification [J]. International Journal of Knowledge Engineering and Soft Data Paradigms, 2011, 3(1): 4–21. DOI: https://doi.org/10.1504/ijkesdp.2011.039875.

    Article  Google Scholar 

  39. PU Yuan-yuan, APEL D B, WANG Chao, et al. Evaluation of burst liability in kimberlite using support vector machine [J]. Acta Geophysica, 2018, 66(5): 973–982. DOI: https://doi.org/10.1007/s11600-018-0178-2.

    Article  Google Scholar 

  40. ZHAO Xi, WU Bang-biao, YU Li-yuan, et al. Influence of discontinuities on rock failure under blasting at Shuangjiangkou hydropower station [J]. Shock and Vibration, 2021, 2021: 5808248. DOI: https://doi.org/10.1155/2021/5808248.

    Article  Google Scholar 

  41. FAN Yang-hua, LI Yi-chao, BAO Xin-jie, et al. Development of machine learning models for predicting postoperative delayed remission in patients with Cushing’s disease [J]. The Journal of Clinical Endocrinology & Metabolism, 2020, 106(1): e217–e231. DOI: https://doi.org/10.1210/clinem/dgaa698.

    Article  Google Scholar 

  42. LIN Yun, ZHOU Ke-ping, LI Jie-lin. Application of cloud model in rock burst prediction and performance comparison with three machine learning algorithms [J]. IEEE Access, 2018, 6: 30958–30968. DOI: https://doi.org/10.1109/ACCESS.2018.2839754.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The frame of research goals was developed by MA Ke, SHEN Qing-qing and SUN Xing-ye. TANG Chun-an and MA Tian-hui provided the funding acquisition and resources. HU Jing was responsible for data curation. SHEN Qing-qing and SUN Xing-ye designed computer programs. The initial draft of the manuscript was written by SHEN Qing-qing and MA Ke. SUN Xing-ye reviewed and modified the manuscript.

Corresponding author

Correspondence to Ke Ma  (马克).

Additional information

Conflict of interest

MA Ke, SHEN Qing-qing, SUN Xing-ye, MA Tian-hui, HU Jing, and TANG Chun-an declare that they have no conflict of interest.

Foundation item: Projects(51974055, 42122052) supported by the National Natural Science Foundation of China; Project(2021JLM-11) supported by the Joint Fund of Natural Science Basic Research Program of Shaanxi Province, China; Project (202001AT070150) supported by Yunnan Fundamental Research Projects, China; Project(2020D-5007-0302) supported by the Fund of China Petroleum Technology and Innovation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, K., Shen, Qq., Sun, Xy. et al. Rockburst prediction model using machine learning based on microseismic parameters of Qinling water conveyance tunnel. J. Cent. South Univ. 30, 289–305 (2023). https://doi.org/10.1007/s11771-023-5233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5233-8

Key words

关键词

Navigation