Skip to main content
Log in

Effect of T6I6 treatment on dynamic mechanical behaviour of Al-Si-Mg-Cu cast alloy and impact resistance of its cast motor shell

T6I6 处理对 Al-Si-Mg-Cu 合金及其铸造电机机壳动态力学行为和抗冲击性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar (SHPB), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Besides, the impact resistances of T6I6 and T6 motor shells of new energy vehicles made of Al-Si-Mg-Cu cast alloy were compared using a trolley crash test. The results indicated that the main strengthening-phases of the T6 peak-aged and T6I6 peak-aged alloy were GP zone and β″ precipitates. T6I6 treatment can increase the density and size of β″ precipitates in peak-aged alloy and enhance both its tensile strength (σb) and elongation (δ). The dynamic toughness values of T6I6 samples are 50.34 MJ/m3 at 2000 s−1 and 177.34 MJ/m3 at 5000 s−1 which are 20% and 12% higher than those of T6 samples, respectively. Compared with a T6 shell, the overall deformation of T6I6 shell is more uniform during the crash test. At an impact momentum of 3.5×104 kg·m/s, the T6I6 shell breaks down at 0.38 s which is 0.10 s later than the T6 shell.

摘要

采用分离式霍普金森压杆(SHPB)、 透射电镜(TEM)和高分辨透射电镜(HRTEM)研究了T6I6处理对Al-Si-Mg-Cu铸造合金动态力学行为和显微组织的影响. 通过台车碰撞试验, 比较了Al-Si-Mg-Cu铸造的新能源汽车发动机机壳分别经过T6I6和T6处理后的抗冲击性能. 结果表明, T6峰时效合金和T6I6 峰时效合金的强化相主要为GP区和β″相. T6I6 处理能增加合金中β″相的密度和体积, 从而提高合金的抗拉强度(σb)和伸长率(δ). T6I6试样在2000 s−1 和5000 s−1 应变速率下的动态韧性分别为50.34 MJ/m3和177.34 MJ/m3, 比T6试样的分别高20%和12%. 与T6机壳相比, T6I6机壳在碰撞试验中的整体变形更加均匀. 当冲击动量为3.5×104kg·m/s时, T6I6壳体在0.38 s时发生破裂, 比T6壳体晚0.10 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Hong, LI Xin. The present situation and the development trend of new materials used in automobile lightweight [J]. Applied Mechanics and Materials, 2012, 189: 58–62. DOI: https://doi.org/10.4028/www.scientific.net/amm.189.58.

    Article  Google Scholar 

  2. HE Hong, WU Xiao-dong, SUN Chao-rong, et al. Grain structure and precipitate variations in 7003-T6 aluminum alloys associated with high strain rate deformation [J]. Materials Science and Engineering A, 2019, 745: 429–439. DOI: https://doi.org/10.1016/j.msea.2019.01.003.

    Article  Google Scholar 

  3. BI Jiang, ZHAO Chang-cai, BI Meng-meng, et al. Heat treatment and granule medium internal high-pressure forming of AA6061 tube [J]. Journal of Central South University, 2017, 24(5): 1040–1049. DOI: https://doi.org/10.1007/s11771-017-3507-8.

    Article  Google Scholar 

  4. SAHA S, SH T, RH G. Effect of overageing conditions on microstructure and mechanical properties in Al−Si−Mg alloy [J]. Journal of Material Science & Engineering, 2016, 5(5): 1–4. DOI: https://doi.org/10.4172/2169-0022.1000281.

    Google Scholar 

  5. SAMUEL A M, DOTY H W, VALTIERRA S, et al. Relationship between tensile and impact properties in Al−Si−Cu−Mg cast alloys and their fracture mechanisms [J]. Materials & Design, 2014, 53: 938–946. DOI: https://doi.org/10.1016/j.matdes.2013.07.021.

    Article  Google Scholar 

  6. LIU Chu-sheng, LIANG Qiu-hua, HAN Wei, et al. Heating analysis and temperature control of spiral sand core box for water-cooled housing [J]. International Journal of Metalcasting, 2020, 14(2): 375–383. DOI: https://doi.org/10.1007/s40962-019-00355-8.

    Article  Google Scholar 

  7. JIAO Yi-nan, ZHANG Yi-fan, MA Shi-qing, et al. Effects of microstructural heterogeneity on fatigue properties of cast aluminum alloys [J]. Journal of Central South University, 2020, 27(3): 674–697. DOI: https://doi.org/10.1007/s11771-020-4323-0.

    Article  Google Scholar 

  8. LIU Kun, CHEN X G. Influence of the modification of iron-bearing intermetallic and eutectic Si on the mechanical behavior near the solidus temperature in Al−Si−Cu 319 cast alloy [J]. Physica B: Condensed Matter, 2019, 560: 126–132. DOI: https://doi.org/10.1016/j.physb.2019.02.022.

    Article  Google Scholar 

  9. SAMUEL A M, DOTY H W, VALTIERRA S, et al. Effect of grain refining and Sr-modification interactions on the impact toughness of Al−Si−Mg cast alloys [J]. Materials & Design, 2014, 56: 264–273. DOI: https://doi.org/10.1016/j.matdes.2013.10.029.

    Article  Google Scholar 

  10. XU Cong, WANG Fang, MUDASSAR H, et al. Effect of Sc and Sr on the eutectic Si morphology and tensile properties of Al−Si−Mg alloy [J]. Journal of Materials Engineering and Performance, 2017, 26(4): 1605–1613. DOI: https://doi.org/10.1007/s11665-017-2599-5.

    Article  Google Scholar 

  11. ELAHI M A, SHABESTARI S G. Effect of various melt and heat treatment conditions on impact toughness of A356 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(4): 956–965. DOI: https://doi.org/10.1016/S1003-6326(16)64191-2.

    Article  Google Scholar 

  12. IBRAHIM M F, SAMUEL A M, DOTY H W, et al. Effect of aging conditions on precipitation hardening in Al−Si−Mg and Al−Si−Cu−Mg alloys [J]. International Journal of Metalcasting, 2017, 11(2): 274–286. DOI: https://doi.org/10.1007/s40962-016-0057-z.

    Article  Google Scholar 

  13. RAM S C, CHATTOPADHYAY K, CHAKRABARTY I. High temperature tensile properties of centrifugally cast in situ Al−Mg2Si functionally graded composites for automotive cylinder block liners [J]. Journal of Alloys and Compounds, 2017, 724: 84–97. DOI: https://doi.org/10.1016/j.jallcom.2017.06.306.

    Article  Google Scholar 

  14. CHAUDHURY S K, APELIAN D. Effects of Mg and Cu content on quench sensitivity of Al−Si−Mg alloy [J]. International Journal of Metalcasting, 2016, 10(2): 138–146. DOI: https://doi.org/10.1007/s40962-016-0020-z.

    Article  Google Scholar 

  15. CHEN Y, LU B Q, ZHANG H A. Hardening and precipitation of a commercial 6061 Al alloy during natural and artificial ageing [J]. IOP Conference Series: Materials Science and Engineering, 2020, 770(1): 012065. DOI: https://doi.org/10.1088/1757-899x/770/1/012065.

    Article  Google Scholar 

  16. ALEXOPOULOS N D, STYLIANOS A, CAMPBELL J. Dynamic fracture toughness of Al−7Si−Mg (A357) aluminum alloy [J]. Mechanics of Materials, 2013, 58: 55–68. DOI: https://doi.org/10.1016/j.mechmat.2012.11.005.

    Article  Google Scholar 

  17. LI Bo, WANG Xiao-min, CHEN Hui, et al. Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy [J]. Journal of Alloys and Compounds, 2016, 678: 160–166. DOI: https://doi.org/10.1016/j.jallcom.2016.03.228.

    Article  Google Scholar 

  18. LAN Jian, SHEN Xue-jun, LIU Juan, et al. Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging [J]. Materials Science and Engineering A, 2019, 745: 517–535. DOI: https://doi.org/10.1016/j.msea.2018.12.051.

    Article  Google Scholar 

  19. XU Xue-hong, DENG Yun-lai, CHI Shui-qing, et al. Effect of interrupted ageing treatment on the mechanical properties and intergranular corrosion behavior of Al−Mg−Si alloys [J]. Journal of Materials Research and Technology, 2020, 9(1): 230–241. DOI: https://doi.org/10.1016/j.jmrt.2019.10.050.

    Article  Google Scholar 

  20. CHEN Song-yi, CHEN Kang-hua, DONG Peng-xuan, et al. Effect of a novel three-step aging on strength, stress corrosion cracking and microstructure of AA7085 [J]. Journal of Central South University, 2016, 23(8): 1858–1862. DOI: https://doi.org/10.1007/s11771-016-3240-8.

    Article  Google Scholar 

  21. LIPA S, KACZMAREK Ł, STEGLIŃSKI M, et al. Effect of core/shell precipitations on fatigue strength of 2024-T6I6 alloy [J]. International Journal of Fatigue, 2019, 127: 165–174. DOI: https://doi.org/10.1016/j.ijfatigue.2019.06.006.

    Article  Google Scholar 

  22. BUHA J, LUMLEY R N, CROSKY A G. Microstructural development and mechanical properties of interrupted aged Al−Mg−Si−Cu alloy [J]. Metallurgical and Materials Transactions A, 2006, 37(10): 3119–3130. DOI: https://doi.org/10.1007/s11661-006-0192-x.

    Article  Google Scholar 

  23. MAO Hong, KONG Yi, CAI Dan, et al. β″ needle-shape precipitate formation in Al−Mg−Si alloy: Phase field simulation and experimental verification [J]. Computational Materials Science, 2020, 184: 109878. DOI: https://doi.org/10.1016/j.commatsci.2020.109878.

    Article  Google Scholar 

  24. KLEIVEN D, AKOLA J. Precipitate formation in aluminium alloys: Multi-scale modelling approach [J]. Acta Materialia, 2020, 195: 123–131. DOI: https://doi.org/10.1016/j.actamat.2020.05.050.

    Article  Google Scholar 

  25. GUO M X, DU J Q, ZHENG C H, et al. Influence of Zn contents on precipitation and corrosion of Al−Mg−Si−Cu−Zn alloys for automotive applications [J]. Journal of Alloys and Compounds, 2019, 778: 256–270. DOI: https://doi.org/10.1016/j.jallcom.2018.11.146.

    Article  Google Scholar 

  26. CAI Cheng, GENG Hui-fang, WANG Shi-fu, et al. Microstructure evolution of AlSi10Mg(Cu) alloy related to isothermal exposure [J]. Materials (Basel, Switzerland), 2018, 11(5): 809. DOI: https://doi.org/10.3390/ma11050809.

    Article  Google Scholar 

  27. ESMAEILI S, LLOYD D J, POOLE W J. A yield strength model for the Al−Mg−Si−Cu alloy AA6111 [J]. Acta Materialia, 2003, 51(8): 2243–2257. DOI: https://doi.org/10.1016/S1359-6454(03)00028-4.

    Article  Google Scholar 

  28. LEE H, SOHN S S, JEON C, et al. Dynamic compressive deformation behavior of SiC-particulate-reinforced A356 Al alloy matrix composites fabricated by liquid pressing process [J]. Materials Science and Engineering A, 2017, 680: 368–377. DOI: https://doi.org/10.1016/j.msea.2016.10.102.

    Article  Google Scholar 

  29. ZAMANI M, SEIFEDDINE S, JARFORS A E W. High temperature tensile deformation behavior and failure mechanisms of an Al−Si−Cu−Mg cast alloy—The microstructural scale effect [J]. Materials & Design, 2015, 86: 361–370. DOI: https://doi.org/10.1016/j.matdes.2015.07.084.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by CHEN Yu-qiang, PAN Su-ping, and LI Ning-bo. OU Chen-gui provided the Al-Si-Mg-Cu cast alloy and its cast motor shell. LIU Wen-hui and SONG Yu-feng completed the SHPB experiment and analyzed the experimental data. TAN Xin-rong and LIU Yang provided the data of crash test, and analyzed the measured data. CHEN Yu-qiang and PAN Su-ping provided microscopic characterization data. The initial draft of the manuscript was written by XU Jia-bei. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Yu-qiang Chen  (陈宇强).

Ethics declarations

CHEN Yu-qiang, XU Jia-bei, PAN Su-ping, LI Ning-bo, OU Chen-gui, LIU Wen-hui, SONG Yu-feng, TAN Xin-rong and LIU Yang declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52075166, 51875197) supported by the National Natural Science Foundation of China; Projects(2019RS2064, 2019GK5043) supported by the Science and Technology Planning Project of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yq., Xu, Jb., Pan, Sp. et al. Effect of T6I6 treatment on dynamic mechanical behaviour of Al-Si-Mg-Cu cast alloy and impact resistance of its cast motor shell. J. Cent. South Univ. 29, 924–936 (2022). https://doi.org/10.1007/s11771-022-4964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4964-2

Key words

关键词

Navigation