Skip to main content
Log in

Optical investigations on lean combustion improvement of natural gas engines via turbulence enhancement

通过提高湍流改善天然气发动机稀薄燃烧的光学研究

  • The 2nd World Congress on Internal Combustion Engines
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the global background of “Carbon Peak” and “Carbon Neutral”, natural gas engines show great advantages in energy-saving and pollution reduction. However, natural gas engines suffer from the issues of combustion instabilities when operating under lean burning conditions. In this paper, the role of turbulence enhancement in improving the lean combustion of natural gas was investigated in an optical SI engine with high compression ratios. Variable swirl control valves (SCV) were designed and intake tumble and swirl were combined to regulate turbulent motion and turbulent intensity. Particle image velocimetry was employed to measure in-cylinder turbulence, and transient pressure acquisition and high-speed photography were synchronously performed to quantify combustion evolutions. The results show that in-cylinder turbulent intensity is enhanced significantly through reducing SCV closing angles. Such that flame propagation speed and thermal efficiency are significantly improved with an increment of turbulent intensity, which indicated that mean effective pressures are not sensitive to spark timing. The analysis of flame images shows that the combined turbulence increases in the radial orientation from the spark plug to the cylinder wall, leading to an earlier flame kernel formation and a faster burning rate. Therefore, the combined turbulence has the potential in reducing the cyclic variations of lean combustion in natural gas engines.

摘要

在“碳达峰”和“碳中和”的全球背景下,天然气发动机在节能减排方面显示出巨大优势。然 而,天然气发动机在稀薄燃烧条件下运行时,存在燃烧稳定性较差的问题。本文在一台高压缩比的火 花点火光学机上探究了提高湍流对天然气稀薄燃烧的影响。设计了可变涡流控制阀(SCV),并结合进 气滚流和涡流来调节湍流方向和强度。采用粒子图像测速技术测量缸内湍流情况,并同步进行瞬态压 力采集和高速摄影以量化燃烧过程。结果表明,减小SCV闭合角可以显著提高缸内湍流强度。随着湍 流强度的增加,火焰传播速度和热效率显著提高,并且指示平均有效压力对火花正时不敏感。分析火 焰图像发现,沿火花塞到气缸壁的径向方向上组合式湍流逐步增强,导致火核形成更早和燃烧速率更 快。因此,组合式湍流具有降低天然气发动机稀薄燃烧循环变动的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SMITH J B, SCHNEIDER S H, OPPENHEIMER M, et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern” [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11): 4133–4137. DOI: https://doi.org/10.1073/pnas.0812355106.

    Article  Google Scholar 

  2. REITZ R D, OGAWA H, PAYRI R, et al. IJER editorial: The future of the internal combustion engine [J]. International Journal of Engine Research, 2020, 21(1): 3–10. DOI: https://doi.org/10.1177/1468087419877990.

    Article  Google Scholar 

  3. SAHOO B B, SAHOO N, SAHA U K. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—A critical review [J]. Renewable and Sustainable Energy Reviews, 2009, 13(6–7): 1151–1184. DOI: https://doi.org/10.1016/j.rser.2008.08.003.

    Article  Google Scholar 

  4. KORAKIANITIS T, NAMASIVAYAM A M, CROOKES R J. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions [J]. Progress in Energy and Combustion Science, 2011, 37(1): 89–112. DOI: https://doi.org/10.1016/j.pecs.2010.04.002.

    Article  Google Scholar 

  5. KALAM M A, MASJUKI H H. An experimental investigation of high performance natural gas engine with direct injection [J]. Energy, 2011, 36(5): 3563–3571. DOI: https://doi.org/10.1016/j.energy.2011.03.066.

    Article  Google Scholar 

  6. CHALA G, ABD AZIZ A, HAGOS F. Natural gas engine technologies: Challenges and energy sustainability issue [J]. Energies, 2018, 11(11): 2934. DOI: https://doi.org/10.3390/en11112934.

    Article  Google Scholar 

  7. REYNOLDS C C O, EVANS R L, ANDREASSI L, et al. The effect of varying the injected charge stoichiometry in a partially stratified charge natural gas engine [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. DOI: https://doi.org/10.4271/2005-01-0247.

    Book  Google Scholar 

  8. ZHANG Qiang, LI Meng-han, LI Guo-xiang, et al. Transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC [J]. Energy, 2017, 132: 225–237. DOI: https://doi.org/10.1016/j.energy.2017.05.039.

    Article  Google Scholar 

  9. VALENCIA G, FONTALVO A, CÁRDENAS Y, et al. Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC [J]. Energies, 2019, 12(12): 2378. DOI: https://doi.org/10.3390/en12122378.

    Article  Google Scholar 

  10. YAN Bo-wen, TONG Lai-hui, WANG Hu, et al. Experimental and numerical investigation of the effects of combustion chamber reentrant level on combustion characteristics and thermal efficiency of stoichiometric operation natural gas engine with EGR [J]. Applied Thermal Engineering, 2017, 123: 1473–1483. DOI: https://doi.org/10.1016/j.applthermaleng.2017.05.139.

    Article  Google Scholar 

  11. MOON S. Potential of direct-injection for the improvement of homogeneous-charge combustion in spark-ignition natural gas engines [J]. Applied Thermal Engineering, 2018, 136: 41–48. DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.068.

    Article  Google Scholar 

  12. THIRUVENGADAM A, BESCH M, PADMANABAN V, et al. Natural gas vehicles in heavy-duty transportation — A review [J]. Energy Policy, 2018, 122: 253–259. DOI: https://doi.org/10.1016/j.enpol.2018.07.052.

    Article  Google Scholar 

  13. CHEN Hao, HE Jing-jing, ZHONG Xiang-lin. Engine combustion and emission fuelled with natural gas: A review [J]. Journal of the Energy Institute, 2019, 92(4): 1123–1136. DOI: https://doi.org/10.1016/j.joei.2018.06.005.

    Article  Google Scholar 

  14. RAJU A V S R, RAMESH A, NAGALINGAM B. Effect of intensified swirl and squish on the performance of a lean burn engine operated on LPG [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. DOI: https://doi.org/10.4271/2000-01-1951.

    Book  Google Scholar 

  15. ZHENG Jin-bao, WANG Jin-hua, ZHAO Zhi-bo, et al. Effect of equivalence ratio on combustion and emissions of a dual-fuel natural gas engine ignited with diesel [J]. Applied Thermal Engineering, 2019, 146: 738–751. DOI: https://doi.org/10.1016/j.applthermaleng.2018.10.045.

    Article  Google Scholar 

  16. CHAN E C, DAVY M H, de SIMONE G, et al. Numerical and experimental characterization of a natural gas engine with partially stratified charge spark ignition [J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(2): 022801. DOI: https://doi.org/10.1115/1.4000855.

    Article  Google Scholar 

  17. KAKAEE A H, PAYKANI A, GHAJAR M. The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 64–78. DOI: https://doi.org/10.1016/j.rser.2014.05.080.

    Article  Google Scholar 

  18. LI Hai-lin, GATTS T, LIU Shi-yu, et al. An experimental investigation on the combustion process of a simulated turbocharged spark ignition natural gas engine operated on stoichiometric mixture [J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(9): 091504. DOI: https://doi.org/10.1115/1.4038692.

    Article  Google Scholar 

  19. DUAN Xiong-bo, LIU Yi-qun, LAI M C, et al. Effects of natural gas composition and compression ratio on the thermodynamic and combustion characteristics of a heavy-duty lean-burn SI engine fueled with liquefied natural gas [J]. Fuel, 2019, 254: 115733. DOI: https://doi.org/10.1016/j.fuel.2019.115733.

    Article  Google Scholar 

  20. HU Zheng-yun. Non-linear instabilities of combustion processes and cycle-to-cycle variations in spark-ignition engines [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. DOI: https://doi.org/10.4271/961197.

    Book  Google Scholar 

  21. DUAN Xiong-bo, DENG Bang-lin, LIU Yi-qun, et al. An experimental study the impact of the hydrogen enrichment on cycle-to-cycle variations of the large bore and lean burn natural gas spark-ignition engine [J]. Fuel, 2020, 282: 118868. DOI: https://doi.org/10.1016/j.fuel.2020.118868.

    Article  Google Scholar 

  22. WU C M, LI T, HUANG S, et al. Experimental investigations on the cyclic variability of a large bore CNG engine [J]. IOP Conference Series: Earth and Environmental Science, 2018, 188: 012040. DOI: https://doi.org/10.1088/1755-1315/188/1/012040.

    Article  Google Scholar 

  23. KHAN A R, RAVI M R, RAY A. Experimental and chemical kinetic studies of the effect of H2 enrichment on the laminar burning velocity and flame stability of various multicomponent natural gas blends [J]. International Journal of Hydrogen Energy, 2019, 44(2): 1192–1212. DOI: https://doi.org/10.1016/j.ijhydene.2018.10.207.

    Article  Google Scholar 

  24. CHEN Lin, WEI Hai-qiao, ZHANG Ren, et al. Effects of late injection on lean combustion characteristics of methane in a high compression ratio optical engine [J]. Fuel, 2019, 255: 115718. DOI: https://doi.org/10.1016/j.fuel.2019.115718.

    Article  Google Scholar 

  25. SRIVASTAVA D K, WINTNER E, AGARWAL A K. Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine [J]. Optical Engineering, 2014, 53: 056120. DOI: https://doi.org/10.1117/1.OE.53.5.056120.

    Article  Google Scholar 

  26. SHAPIRO E, TINEY N, KYRTATOS P, et al. Experimental and numerical analysis of pre-chamber combustion systems for lean burn gas engines [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. DOI: https://doi.org/10.4271/2019-01-0260.

    Book  Google Scholar 

  27. JUNG D, SASAKI K, SUGATA K, et al. Combined effects of spark discharge pattern and tumble level on cycle-to-cycle variations of combustion at lean limits of SI engine operation [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. DOI: https://doi.org/10.4271/2017-01-0677.

    Book  Google Scholar 

  28. ZHOU Feng, FU Jian-qin, KE Wen-hui, et al. Effects of lean combustion coupling with intake tumble on economy and emission performance of gasoline engine [J]. Energy, 2017, 133: 366–379. DOI: https://doi.org/10.1016/j.energy.2017.05.131.

    Article  Google Scholar 

  29. MOLDOVANU D, MARIAŞIU F, BAGAMERI N. Influence of swirl and tumble motion inside the combustion chamber of a compression ignited engine on vertices formation [C]//MATEC Web of Conferences. 2018, 184: 01022. DOI: https://doi.org/10.1051/matecconf/201818401022.

    Article  Google Scholar 

  30. ZHANG Zhi-jin, ZHANG Hai-yan, WANG Tian-you, et al. Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads [J]. Energy, 2014, 65: 18–24. DOI: https://doi.org/10.1016/j.energy.2013.11.062.

    Article  Google Scholar 

  31. MILLO F, LUISI S, BOREAN F, et al. Numerical and experimental investigation on combustion characteristics of a spark ignition engine with an early intake valve closing load control [J]. Fuel, 2014, 121: 298–310. DOI: https://doi.org/10.1016/j.fuel.2013.12.047.

    Article  Google Scholar 

  32. ROY M K, KAWAHARA N, TOMITA E, et al. Jet-guided combustion characteristics and local fuel concentration measurements in a hydrogen direct-injection spark-ignition engine [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2977–2984. DOI: https://doi.org/10.1016/j.proci.2012.06.103.

    Article  Google Scholar 

  33. HEYWOOD J B. Internal combustion engine fundamentals [M]. New York: MCGRAW-Hill, 1988.

    Google Scholar 

  34. LEE K C, YOO S C, SCHOCK H J. Quantification of volumetric in-cylinder flow of SI engine using 3D laser doppler velocimetry [C]//FISITA World Automotive Congress. Seoul, Korea, 2000. https://www.sae.org/publications/technical-papers/content/2000-05-0035/.

  35. HEYWOOD J B. Internal combustion engine fundamentals [M]. Singapore: McGraw-Hill, International Edition, 2002. https://www.accessengineeringlibrary.com/content/book/9781260116106.

    Google Scholar 

  36. BANAEIZADEH A, AFSHARI A, SCHOCK H, et al. Large-eddy simulations of turbulent flows in internal combustion engines [J]. International Journal of Heat and Mass Transfer, 2013, 60: 781–796. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.065.

    Article  Google Scholar 

  37. SODER M. Creation and destruction of in-cylinder flows: Large eddy simulations of the intake and the compression strokes[D]. Stockholm: Royal Institute of Technology, 2015.

    Google Scholar 

  38. WANG Zhi-yan, MAGI V, ABRAHAM J. Turbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions [J]. Combustion and Flame, 2017, 180: 53–62. DOI: https://doi.org/10.1016/jxombustflame.2017.02.023.

    Article  Google Scholar 

  39. PAN Jia-ying, ZHENG Ze-yuan, WEI Hai-qiao, et al. An experimental investigation on pre-ignition phenomena: Emphasis on the role of turbulence [J]. Proceedings of the Combustion Institute, 2021, 38(4): 5801–5810. DOI: https://doi.org/10.1016/j.proci.2020.06.240.

    Article  Google Scholar 

  40. HUANG Zuo-hua, WANG Jin-hua, LIU Bing, et al. Combustion characteristics of a direct-injection engine fueled with natural gas-hydrogen blends under different ignition timings [J]. Fuel, 2007, 86(3): 381–387. DOI: https://doi.org/10.1016/j.fuel.2006.07.007.

    Article  Google Scholar 

  41. PETERSON B, REUSS D L, SICK V. On the ignition and flame development in a spray-guided direct-injection spark-ignition engine [J]. Combustion and Flame, 2014, 161(1): 240–255. DOI: https://doi.org/10.1016/j.combustflame.2013.08.019.

    Article  Google Scholar 

  42. ALEIFERIS P G, TAYLOR A M K P, ISHII K, et al. The nature of early flame development in a lean-burn stratified-charge spark-ignition engine [J]. Combustion and Flame, 2004, 136(3): 283–302. DOI: https://doi.org/10.1016/j.combustflame.2003.08.011.

    Article  Google Scholar 

  43. KIM T, SONG J, PARK S. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines [J]. International Journal of Heat and Fluid Flow, 2015, 56: 124–136. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2015.07.013.

    Article  Google Scholar 

  44. STEPHEN R T. An introduction to combustion: Concepts and applications [M]. New York: McGraw-Hill, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LI Jin-guang provided the concept and edited the draft of manuscript. ZHANG Ren and CHEN Lin analyzed the experimental results. YANG Peng-hui was responsible for designing the experimental scheme. PAN Jia-ying replied to reviewers’ comments and revised the final version. The main work of WEI Hai-qiao was to provide technical support.

Corresponding author

Correspondence to Jia-ying Pan  (潘家营).

Additional information

Conflict of interest

LI Jin-guang, ZHANG Ren, YANG Peng-hui, PAN Jia-ying, WEI Hai-qiao, and CHEN Lin declare that they have no conflict of interest.

Foundation item: Projects(52076149, 51825603) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jg., Zhang, R., Yang, Ph. et al. Optical investigations on lean combustion improvement of natural gas engines via turbulence enhancement. J. Cent. South Univ. 29, 2225–2238 (2022). https://doi.org/10.1007/s11771-022-4923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4923-y

Key words

关键词

Navigation