Skip to main content
Log in

Cloud model-clustering analysis based evaluation for ventilation system of underground metal mine in alpine region

基于云聚类分析的高寒高海拔地区地下金属矿山通风系统评估

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Ventilation system is significant in underground metal mine of alpine region. Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation system. However, it is difficult to make an effective evaluation of ventilation system due to the lack of classification criteria with respect to underground metal mine in alpine region. This paper proposes a novel evaluation method called the cloud model-clustering analysis (CMCA). Cloud model (CM) is utilized to process collected data of ventilation system, and they are converted into cloud descriptors by CM. Cloud similarity (CS) based Euclidean distance (ED) is proposed to make clustering analysis of assessed samples. Then the classification of assessed samples will be identified by clustering analysis results. A case study is developed based on CMCA. Evaluation results show that ventilation effectiveness can be well classified. Moreover, CM is used alone to make comparison of evaluation results obtained by CMCA. Then the availability and validity of CMCA is verified. Meanwhile, difference of CS based ED and classical ED is analyzed. Two new clustering analysis methods are introduced to make comparison with CMCA. Then the ability of proposed CMCA to meet evaluation requirements of ventilation system is verified.

摘要

良好的通风系统对于高寒高海拔地下金属矿山意义重大, 科学合理的评估可有效维护风机系统的性能。由于相关分类方法与标准的缺失, 使得高寒高海拔地下金属矿山的风机系统评估难以进行, 因此提出了一种名为云聚类分析的新评估方法。该方法首先采用云模型对风机系统待评估的数据进行前处理, 并将它们转换为云描述符; 然后, 提出一种基于云相似度的欧氏距离并推导出其对应的算法, 以此对各评估样本进行聚类分析; 最后, 根据聚类分析结果对评估样本进行科学分类, 从而完成通风系统的评估。本文引入一个具体实例进行案例分析, 分析结果显示云聚类分析法可以对风机效能进行有效分类, 进而为通风系统的维护管理提供指导。此外, 将单独采用云模型的评估结果与云聚类分析结果进行对比, 验证云聚类分析的可用性与有效性。同时, 对比分析传统欧式距离与基于云相似度的欧式距离, 以及引入两种现有的聚类分析方法与本文所提方法进行比较研究, 结果说明云聚类分析能够满足高海拔高寒地下金属矿山通风系统的评估需求。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Z, SHAO S, SHI X P, SUN Y P, ZHANG X L. Structural transformation of manufacturing, natural resource dependence, and carbon emissions reduction: Evidence of a threshold from China [J]. J Clean Prod, 2019, 206: 920–927. DOI: https://doi.org/10.1016/j.jclepro.2018.09.241.

    Article  Google Scholar 

  2. YAO X W, ZHOU Z C, LI J S, ZHANG B H, ZHOU H D, XU K L. Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass [J]. Energy, 2020, 198: 1–14. DOI: https://doi.org/10.1016/j.energy.2020.117367.

    Article  Google Scholar 

  3. DONG L J, DENG S J, WANG F Y. Some developments and new insights for environmental sustainability and disaster control of tailings dam [J]. J Clean Prod, 2020, 269: 122270. DOI: https://doi.org/10.1016/j.jclepro.2020.122270.

    Article  Google Scholar 

  4. QIAN D W, YAN C Z, XING Z P, XIU L N. Monitoring coal mine changes and their impact on landscape patterns in an alpine region: A case study of the Muli coal mine in the Qinghai-Tibet Plateau [J]. Environ Monit Assess, 2017, 189(11): 1–13. DOI: https://doi.org/10.1007/s10661-017-6284-9.

    Article  Google Scholar 

  5. WIDIATMOJO A, SASAKI K, SUGAI Y, SUZUKI Y, TANAKA H, UCHIDA K, MATSUMOTO H. Assessment of air dispersion characteristic in underground mine ventilation: Field measurement and numerical evaluation [J]. Process Saf Environ Protect, 2015, 93: 173–181. DOI: https://doi.org/10.1016/j.psep.2014.04.00.

    Article  Google Scholar 

  6. TANG Z X, YANG P. Research on oxygen-increasing ventilation in alpine region [C]//3rd International Symposium on Modern Mining & Safety Technology. Fuxin, China, 2008.

  7. ZHANG Q, ZHOU G, QIAN X M, YUAN M Q, SUN Y L, WANG D. Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation [J]. J Clean Prod, 2018, 184: 239–250. DOI: https://doi.org/10.1016/j.jclepro.2018.02.230.

    Article  Google Scholar 

  8. DONG L J, SUN D Y, HAN G J, LI X B, HU Q C, SHU L. Velocity-free localization of autonomous driverless vehicles in underground intelligent mines [J]. IEEE Trans Veh Technol, 2020, 69(9): 9292–9303. DOI: https://doi.org/10.1109/TVT.2020.2970842.

    Article  Google Scholar 

  9. DONG L J, HU Q C, TONG X J, LIU Y F. Velocity-free MS/AE source location method for Three-dimensional hole-containing structures [J]. Engineering, 2020, 6(7): 827–834. DOI: https://doi.org/10.1016/j.eng.2019.12.016.

    Article  Google Scholar 

  10. NIE X X, WEI X B, LI X C, LU C W. Heat treatment and ventilation optimization in a deep mine [J]. Adv Civ Eng, 2018: 1–12. DOI: https://doi.org/10.1155/2018/1529490.

  11. GHOSHDASTIDAR A J, HU Z Z, NAZARENKO Y, ARIYA P A. Exposure to nanoscale and microscale particulate air pollution prior to mining development near a northern indigenous community in Quebec, Canada [J]. Environ Sci Pollut Res, 2018: 25(9): 8976–8988. DOI: https://doi.org/10.1007/s11356-018-1201-5.

    Article  Google Scholar 

  12. CAO R H, CAO P, LIN H. A kind of control technology for squeezing failure in deep roadways: A case study [J]. Geomat Nat Hazards Risk, 2017, 8(2): 1715–1729. DOI: https://doi.org/10.1080/19475705.2017.1385542.

    Article  Google Scholar 

  13. CHENG J W, YANG S Q. Data mining applications in evaluating mine ventilation system [J]. Safety Sci, 2017, 50(4): 918–922. DOI: https://doi.org/10.1016/j.ssci.2011.08.003.

    Article  Google Scholar 

  14. HUANG J X, LIU H Q, WANG H Q. Mine ventilation safety evaluation based on artificial neural network-fuzzy control theory [J]. Oxid Commun, 2016, 39(2A): 2026–2033.

    Google Scholar 

  15. LEE D K. Optimal design of mine ventilation system using a ventilation improvement index [J]. J Min Sci, 2016, 52(4): 762–777. DOI: https://doi.org/10.1134/S1062739116041178.

    Article  MathSciNet  Google Scholar 

  16. NEL A J H, VOSLOO J C, MATHEWS M J. Evaluating complex mine ventilation operational changes through simulations [J]. J Energy South Afr, 2018, 29(3): 22–32. DOI: https://doi.org/10.17159/2413-3051/2018/v29i3a4445.

    Article  Google Scholar 

  17. LIANG W Z, ZHAO G Y, LUO S Z. Selecting the optimal mine ventilation system via a decision making framework under hesitant [J]. Symmetry-Basel, 2018, 10(7): 283. DOI: https://doi.org/10.3390/sym10070283.

    Article  Google Scholar 

  18. ZHANG L M, WU X G, DING L Y, SKIBNIEWSKI M J. A novel model for risk assessment of adjacent buildings in tunneling environments [J]. Build Environ, 2013, 65: 185–194. DOI: https://doi.org/10.1016/j.buildenv.2013.04.008.

    Article  Google Scholar 

  19. LI Y X, QI L H, SONG Y S, HOU X H, LI H J. Quantitative characterization of carbon/carbon composites matrix texture based on image analysis using polarized light microscope [J]. Microsc Res Tech, 2015, 78(10): 908–917. DOI: https://doi.org/10.1002/jemt.22554.

    Article  Google Scholar 

  20. WANG D, LIU D F, DING H, SINGH V P, WANG Y K, ZENG X K, WU J C, WANG L C. A cloud model-based approach for water quality assessment [J]. Environ Res, 2016, 148: 24–35. DOI: https://doi.org/10.1016/j.envres.2016.03.005.

    Article  Google Scholar 

  21. LIU Z B, SHAO J F, XU W Y, XU F. Comprehensive stability evaluation of rock slope using the cloud model-based approach [J]. Rock Mech Rock Eng, 2014, 47(6): 2239–2252. DOI: https://doi.org/10.1007/s00603-013-0507-3.

    Article  Google Scholar 

  22. ZHANG W J, LIU S L, SUN B, LIU Y, PECHT M. A CM-based method for the analysis of accelerated life test data [J]. Microelectron Reliab, 2015, 55(1): 123–128. DOI: https://doi.org/10.1016/j.microrel.2014.10.006.

    Article  Google Scholar 

  23. YAN F, XU K L. A set pair analysis based layer of protection analysis and its application in quantitative risk assessment [J]. J Loss Prev Process Ind, 2018, 55: 313–319. DOI: https://doi.org/10.1016/j.jlp.2018.07.007.

    Article  Google Scholar 

  24. YAN F, XU K L. Methodology and case study of quantitative preliminary hazard analysis based on cloud model [J]. J Loss Prev Process Ind, 2109, 60: 116–124. DOI: https://doi.org/10.1016/j.jlp.2019.04.013.

    Article  Google Scholar 

  25. XU Q W, XU K L, YAO X W. Safety assessment of petrochemical enterprise using the cloud model, PHA-LOPA and the bow-tie model [J]. R Soc Open Sci, 2018, 5(7): 2239–2252. DOI: https://doi.org/10.1098/rsos.180212.

    Article  Google Scholar 

  26. LI D Y, LIU C Y, GAN W Y. A new cognitive model: Cloud model [J]. Int J Intell Syst, 2019, 24(3): 357–375. DOI: https://doi.org/10.1002/int.20340.

    Article  MATH  Google Scholar 

  27. ZANG T L, WANG Y, HE Z Y, QIAN Q Q. Harmonic pollution level assessment in distribution system using extended cloud similarity measurement method [M]//Communications in Computer and Information Science. Singapore: Springer Singapore, 2017: 388–400. DOI: https://doi.org/10.1007/978-981-10-6388-6_32.

    Google Scholar 

  28. XU Q W, XU K L. Quality evaluation of Chinese red wine based on cloud model [J]. J Food Biochem, 2019, 43(10): e12787. DOI: https://doi.org/10.1111/jfbc.12787.

    Article  Google Scholar 

  29. LU B B, CHARLTON M, BRUNSDON C, HARRIS P. The Minkowski approach for choosing the distance metric in geographically weighted regression [J]. Int J Geogr Inf Sci, 2016, 30(2): 351–368. DOI: https://doi.org/10.1080/13658816.2015.1087001.

    Article  Google Scholar 

  30. XIAN S D, SUN W J, XU S H, GAO Y Y. Fuzzy linguistic induced OWA Minkowski distance operator and its application in group decision making [J]. Pattern Anal Appl, 2016, 19(2): 325–335. DOI: https://doi.org/10.1007/s10044-014-0397-3.

    Article  MathSciNet  MATH  Google Scholar 

  31. KUMAR V, CARDIFF B, FLANAGAN M F. User-antenna selection for physical-layer network coding based on Euclidean distance [J]. IEEE Trans Commun, 2019, 67(5): 3363–3375. DOI: https://doi.org/10.1109/TCOMM.2019.2893642.

    Article  Google Scholar 

  32. MONTECHIESI L, COCCONCELLI M, RUBINI R. Artificial immune system via Euclidean distance minimization for anomaly detection in bearings [J]. Mech Syst Signal Proc, 2016, 76–77: 380–393. DOI: https://doi.org/10.1016/j.ymssp.2015.04.017.

    Article  Google Scholar 

  33. GOMEZ D, HERNANDEZ L A, YABOR L, BEEMSTER G T S, TEBBE C C, PAPENBROCK J, LORENZO J C. Euclidean distance can identify the mannitol level that produces the most remarkable integral effect on sugarcane micropropagation in temporary immersion bioreactors [J]. J Plant Res, 2018, 131(4): 719–724. DOI: https://doi.org/10.1007/s10265-018-1028-7.

    Article  Google Scholar 

  34. YAN F, XU K L, LI D S, CUI Z K. A novel hazard assessment method for biomass gasification stations based on extended set pair analysis [J]. PLoS One, 2017, 12(9): e0185006. DOI: https://doi.org/10.1371/journal.pone.0185006.

    Article  Google Scholar 

  35. LI D Y, DU Y. Artificial intelligence with uncertainty [M]. Boca Raton: Chapman & Hall/CRC, 2017.

    Book  MATH  Google Scholar 

  36. WANG J Q, PENG J J, ZHANG H Y, LIU T, CHEN X H. An uncertain linguistic multi-criteria group decision-making method based on a cloud model [J]. Group Decis Negot, 2015, 24(1): 171–192. DOI: https://doi.org/10.1007/s10726-014-9385-7.

    Article  Google Scholar 

  37. WANG J Q, LU P, ZHANG H Y, CHEN X H. Method of multi-criteria group decision-making based on cloud aggregation operators with linguistic information [J]. Inf Sci, 2014, 274: 177–191. DOI: https://doi.org/10.1016/j.ins.2014.02.130.

    Article  MathSciNet  MATH  Google Scholar 

  38. YAN F, JIN C, LI Z J, CAO R H, XU K L. Research and development of field theory-based three-dimensional risk assessment Part I: Optimization of risk reduction [J]. Saf Sci, 2019, 120: 312–322. DOI: https://doi.org/10.1016/j.ssci.2019.07.018.

    Article  Google Scholar 

  39. ZHANG J J, XU K L, RENIERS G, YOU G. Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018 [J]. Process Saf Environ Protect, 2020, 133: 332–340. DOI: https://doi.org/10.1016/j.psep.2019.10.014.

    Article  Google Scholar 

  40. YANG P, LV W S. Research on ventilation and dust control technology of deep underground mine in alpine region [M]. Beijing: Metallurgical Industry Press, 2012. (in Chinese)

    Google Scholar 

  41. GB 16423-2006. Safety regulations for metal and nonmetal mines [S]. (in Chinese)

  42. AQ 2013–2008. Ventilation technical standards for metal and nonmetal underground mines [S]. (in Chinese)

  43. GBZ/T 192.2-2007. Determination of dust in the air of workplace, Part 2: Respirable dust concentration [S]. (in Chinese)

  44. LI C H, SUN L, JIA J X, CAI Y P, WANG X. Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan, China [J]. Sci Total Environ, 2016, 557: 307–316. DOI: https://doi.org/10.1016/j.scitotenv.2016.03.069.

    Article  Google Scholar 

  45. RODRIGUES E O. Combining Minkowski and Chebyshev: New distance proposal and survey of distance metrics using k-nearest neighbours classifier [J]. Pattern Recognit Lett, 2018, 110: 66–71. DOI: https://doi.org/10.1016/j.patrec.2018.03.021.

    Article  Google Scholar 

  46. WANG B, WU C, KANG L G, RENIERS G, HUANG L. Work safety in China’s Thirteenth Five-Year plan period (2016–2020): Current status, new challenges and future tasks [J]. Saf Sci, 2018, 104: 164–178. DOI: https://doi.org/10.1016/j.ssci.2018.01.012.

    Article  Google Scholar 

  47. GE J, XU K L, ZHENG X, YAO X W, XU Q W, ZHANG B H. The main challenges of safety science [J]. Saf Sci, 2019, 118: 119–125. DOI: https://doi.org/10.1016/j.ssci.2019.05.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-jun Li  (李孜军).

Additional information

Foundation item

Project(2018YFC0808404) supported by National Key Research and Development Program of China

Contributors

YAN Fang, HUANG Rui and GE Ji developed the overarching research goals. YAN Fang, LI Zi-jun and CAO Ri-hong provided the concept and edited the draft of manuscript. YAN Fang conducted the literature review and wrote the first draft of the manuscript. LI Zi-jun and XU Kai-li edited the draft of manuscript. DONG Long-jun and YAN Fang revised the manuscript.

Conflict of interest

YAN Fang, LI Zi-jun, DONG Long-jun, HUANG Rui, CAO Ri-hong, GE Ji and XU Kai-li declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Li, Zj., Dong, Lj. et al. Cloud model-clustering analysis based evaluation for ventilation system of underground metal mine in alpine region. J. Cent. South Univ. 28, 796–815 (2021). https://doi.org/10.1007/s11771-021-4646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4646-5

Key words

关键词

Navigation