Skip to main content
Log in

Aerodynamic noise characteristics of high-speed train foremost bogie section

高速列车头车 1 位转向架区域的空气动力噪声特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This paper investigates the main scale analysis of the aerodynamic noise in the foremost bogie area by the large-eddy simulation (LES) and the Ffowcs Williams-Hawkings (FW-H) analogy. The mechanism of the aerodynamic noise in this area has been excavated. The aerodynamic excitation results show that the bogie divides the bogie compartment into two cavities, each of which contains a large circulating flow and presents multi-peak characteristics in the frequency domain. The far-field noise results suggest that in the speed range of 200–350 km/h, the aerodynamic noise mechanism in the bogie area is the same. Cavity noise is the main noise mechanism in the foremost bogie area, and the bogie divides the bogie cabin into two cavities, thereby changing the aerodynamic noise in this area.

摘要

本文采用大涡模拟和 FW-H 声学类比的仿真方法对高速列车头车 1 位转向架气动发声主尺度进行了分析, 获得了该区域气动噪声的发声机理. 流场气动激励结果表明, 转向架将转向架腔分隔为两个腔体, 每个腔体内都形成了较大的环流, 其流场脉动频谱呈现多峰离散特性. 远场噪声结果表明, 在 55.56–97.22 m/s 的速度范围内, 转向架区域的气动发声机理是相似的. 空腔噪声是高速列车头车 1 位转向架区域的主要噪声机制, 转向架的存在将转向架腔分成两个腔体, 改变了该腔的发声模式.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TAN Xiao-ming, WANG Tian-tian, QIAN Bo-sen, QIN Bin, LU Yi-bin. Aerodynamic noise simulation and quadrupole noise problem of 600 km/h high-speed train [J]. IEEE Access, 2019, 7: 124866–124875. DOI: https://doi.org/10.1109/ACCESS.2019.2939023.

    Article  Google Scholar 

  2. MAO Yi-qian, YANG Ming-zhi, WANG Tian-tian, WU Fan, Qian Bo-sen. Influence of vacuum level on heat transfer characteristics of maglev levitation electromagnet module [J]. Applied Sciences, 2020, 10(3): 1106. DOI: https://doi.org/10.3390/app10031106.

    Article  Google Scholar 

  3. DENG Yong-quan, XIAO Xin-biao, HE Bin, JIN Xue-song. Analysis of external noise spectrum of high-speed railway [J]. Journal of Central South University, 2014, 21(12): 4753–4761. DOI: https://doi.org/10.1007/s11771-014-2485-3.

    Article  Google Scholar 

  4. ZHANG Xun, LIU Rui, CAO Zhi-yang, Wang Xi-yang, LI Xiao-zhen. Acoustic performance of a semi-closed noise barrier installed on a high-speed railway bridge: Measurement and analysis considering actual service conditions [J]. Measurement, 2019, 138: 386–399. DOI: https://doi.org/10.1016/j.measurement.2019.02.030.

    Article  Google Scholar 

  5. FREMION N, VINCENT N, JACOB M, ROBERT G, LOUISOT A, GUERRAND S. Aerodynamic noise radiated by the intercoach spacing and the bogie of a high-speed train [J]. Journal of Sound and Vibration, 2000, 231(3): 577–593. DOI: https://doi.org/10.1006/jsvi.1999.2546.

    Article  Google Scholar 

  6. TAN Xiao-ming, YANG Zhi-gang, WU Xiao-long, HE Jiao, ZHANG Dai-jiao, PENG Yong. Experimental research on frequency spectrum component model of noise source outside the CIT500 train [J]. Journal of the China Railway Society, 2017(7): 32–37. (in Chinese)

  7. SONG Lei-ming, CHEN Hao, LI Bao-chuan. Aerodynamic noise separation of an EMU trailer bogie area using train operation tests [J]. Shock and Vibration, 2018, 2018: 1–10. DOI: https://doi.org/10.1155/2018/7941980.

    Google Scholar 

  8. IGLEIAS E L, THOMPSON D J, SMITH M, KITAGAWA T, YAMAZAKI N. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise [J]. International Journal of Rail Transportation, 2017, 5(2): 87–109. DOI: https://doi.org/10.1080/23248378.2016.1274685.

    Article  Google Scholar 

  9. LAUTERBACH A, EHRENFRIED K, LOOSE S, WAGNER C. Microphone array wind tunnel measurements of Reynolds number effects in high-speed train aeroacoustics [J]. International Journal of Aeroacoustics, 2012, 11(3, 4): 411–446. DOI: https://doi.org/10.1260/1475-472X.11.3-4.411.

    Article  Google Scholar 

  10. MINELLI G, YAO H D, ANSERSSON N, HOSMAD P, FORSSEN J, KRAJNOVIC S. An aeroacoustic study of the flow surrounding the front of a simplified ICE3 high-speed train model [J]. Applied Acoustics, 2020, 160: UNSP 107125. DOI: https://doi.org/10.1016/j.apacoust.2019.107125.

    Article  Google Scholar 

  11. ZHU Jian-yue, HU Zhi-wei, THOMPSON D J. Flow behaviour and aeroacoustic characteristics of a simplified high-speed train bogie [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(7): 1642–1658. DOI: https://doi.org/10.1177/0954409715605129.

    Article  Google Scholar 

  12. MASSON E, PARADOT N, ALLAIN E. The numerical prediction of the aerodynamic noise of the TGV POS high-speed train power car [C]// 10th International Workshop on Railway Noise (IWRN 2010). Tokyo, Japan: Springer, 2012: 437–444.

    Google Scholar 

  13. LALLEMAND P, LUO Li-shi. Lattice Boltzmann equation with overset method for moving objects in two-dimensional flows [J]. Journal of Computational Physics, 2020, 407: 109223. DOI: https://doi.org/10.1016/j.jcp.2019.109223.

    Article  MathSciNet  Google Scholar 

  14. LIU Xiao-wan, THOMPSON D J, HU Zhi-wei. Numerical investigation of aerodynamic noise generated by circular cylinders in cross-flow at Reynolds numbers in the upper subcritical and critical regimes [J]. International Journal of Aeroacoustics, 2019, 18(4, 5): 470–495. DOI: https://doi.org/10.1177/1475472X19858348.

    Article  Google Scholar 

  15. ZHANG Ya-dong, ZHANG Ji-ye, ZHANG Liang, LI Tian. Numerical analysis of aerodynamic noise of motor car bogie for high-speed trains [J]. Journal of Southwest Jiaotong University, 2016, 51(5): 870–877. (in Chinese)

    Google Scholar 

  16. TAN Xiao-ming, LIU Hui-fang, YANG Zhi-gang, ZHANG Jie, WANG Zhong-gang, WU Yu-wei. Characteristics and mechanics analysis of aerodynamic noise source for high-speed train in tunnel [J]. Complexity, 2018(7): 1–19. DOI: https://doi.org/10.1155/2018/5858415.

  17. DONG Tian-yun, LIANG Xi-feng, KRAJNOVIC S, XIONG Xiao-hui, ZHOU Wei. Effects of simplifying train bogies on surrounding flow and aerodynamic forces [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 170–182. DOI: https://doi.org/10.1016/j.jweia.2019.06.006.

    Article  Google Scholar 

  18. LI Xue-liang, WU Fan, TAO Yu, YANG Ming-zhi, NEWMAN R, VAINCHTEIN D. Numerical study of the air flow through an air-conditioning unit on high-speed trains [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 187: 26–35. DOI: https://doi.org/10.1016/j.jweia.2019.01.015.

    Article  Google Scholar 

  19. HODARA J, SMITH M. Hybrid reynolds-averaged navier-stokes/large-eddy simulation closure for separated transitional flows [J]. AIAA Journal, 2017, 55(6): 1948–1958. DOI: https://doi.org/10.2514/1.J055475

    Article  Google Scholar 

  20. WANG Jia-bin, MINELLI G, DONG Tian-yun, CHEN Guang, KRAJNOVIC S. The effect of bogie fairings on the slipstream and wake flow of a high-speed train. An IDDES study [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 183–202. DOI: https://doi.org/10.1016/j.jweia.2019.06.010.

    Article  Google Scholar 

  21. CHEN Guang, LI Xiao-bai, LIU Zhen, ZHOU Dan, WANG Zhe, LIANG Xi-feng, KRAJNOVIC S. Dynamic analysis of the effect of nose length on train aerodynamic performance [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 198–208. DOI: https://doi.org/10.1016/j.jweia.2018.11.021.

    Article  Google Scholar 

  22. LI Xiao-bai, CHEN Guang, WANG Zhe, XIONG Xiao-hui, LIANG Xi-feng, YIN Jing. Dynamic analysis of the flow fields around single- and double-unit trains [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 188: 136–150. DOI: https://doi.org/10.1016/j.jweia.2019.02.015.

    Article  Google Scholar 

  23. TAN Xiao-ming, YANG Zhi-gang, TAN Xi-ming, WU Xiao-long, ZHANG Jie. Vortex structures and aeroacoustic performance of the flow field of the pantograph [J]. Journal of Sound and Vibration, 2018, 423: 17–32. DOI: https://doi.org/10.1016/j.jsv.2018.06.025.

    Google Scholar 

  24. TAN Xiao-ming, XIE Peng-peng, YANG Zhi-gang, GAO Jian-yong. Adaptability of turbulence models for pantograph aerodynamic noise simulation [J]. Shock and Vibration, 2019, 2019: 6405809. DOI: https://doi.org/10.1155/2019/6405809.

    Article  Google Scholar 

  25. FFOWCS J E, HAWKING D L. Sound generation by turbulence and surfaces in arbitrary motion [J]. Philosophical Transactions for the Royal Society of London, Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321–342. DOI: https://doi.org/10.1098/rsta.1969.0031.

    Article  Google Scholar 

  26. ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds [R]. Farnborough: Royal Aircraft Establishment, 1964. http://resolver.tudelft.nl/uuid:a38f3704-18d9-4ac8-a204-14ae03d84d8c.

    Google Scholar 

  27. ROCKWELL D, NAUDASCHER E. Self-sustaining oscillations of flow past cavities [J]. Journal of Fluids Engineering, 1978, 100(2): 152–165. DOI: https://doi.org/10.1115/1.3448624.

    Article  Google Scholar 

  28. YATES J. Interaction with and production of sound by vortex flows [C]// 4th Aeroacoustics Conference. Atlanta, GA, USA AIAA Meeting Paper, 1977: 1–80. DOI: https://doi.org/10.2514/6.1977-1352.

  29. INAGAKI M, MURATA O, KONDOH T. Numerical prediction of fluid-resonant oscillation at low mach number [J]. AIAA Journal, 2002, 40(9): 1823–1829. DOI: https://doi.org/10.2514/2.1859.

    Article  Google Scholar 

  30. LIU Hong-kang, YAN Chao, ZHAO Ya-tian, QIN Yu-pei. Analysis of pressure fluctuation in transonic cavity flows using modal decomposition [J]. Aerospace Science and Technology, 2018, 77: 819–835. DOI: https://doi.org/10.1016/j.ast.2018.03.033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ming Tan  (谭晓明).

Additional information

Foundation item: Project(2017YFB1201103) supported by the National Key Research and Development Plan of China; Project(2019zzts540) supported by the Graduate Student Independent Innovation Project of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Xf., Liu, Hf., Dong, Ty. et al. Aerodynamic noise characteristics of high-speed train foremost bogie section. J. Cent. South Univ. 27, 1802–1813 (2020). https://doi.org/10.1007/s11771-020-4409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4409-8

Key words

关键词

Navigation