Skip to main content
Log in

Flexural and eigen-buckling analysis of steel-concrete partially composite plates using weak form quadrature element method

界面滑移钢-混凝土组合板弹性弯曲及稳定性的弱形式求积元分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates (PCPs) with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method (QEM). Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM. The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution. It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used. The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement. The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances. Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented. It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.

摘要

利用抗剪连接件将钢板与钢筋混凝土板进行组合形成的钢-混凝土组合板, 能充分发挥混凝土 和钢材优越的材料性能, 在建筑、桥梁结构的新建和加固中得到了广泛应用. 由于抗剪连接件的非完全刚性, 在对钢-混凝土组合板进行力学分析时, 应对界面滑移效应进行充分考虑. 本文采用弱形式 求积元法对矩形钢-混凝土组合板在简支和固支边界条件下的弯曲和特征值屈曲问题进行了分析. 弱形式求积元法的显著特点是利用同一组插值点直接计算待求解问题弱形式描述中的积分和导数, 通过 调整单元的阶次来满足待求解问题的收敛要求. 通过与现有文献中有限元及解析解的数值结果进行比较, 验证了本文数值模型的高效性. 对于工程中常见抗剪连接刚度的矩形钢-混凝土组合板, 仅用一 个求积元单元就能得到满意的计算结果. 进一步的参数化研究表明, 当抗剪连接件的连接刚度在特定范围内变化时, 其对钢-混凝土组合板的弯曲变形和临界屈曲荷载有显著影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NIE Jian-guo, LI Fa-xiong. Elastic bending and stability of steel-concrete composite plate [J]. Engineering Mechanics, 2009, 26(10): 59–66. http://engineeringmechanics.cn/CN/Y2009/V26/I10/59. (in Chinese)

    Google Scholar 

  2. WU Li-li, LI Jia-wei, XING Rui-jiao, AN Li-pei. Experimental study and numerical simulation of the shear capacity of steel plate-concrete composite slabs [J]. Engineering Mechanics, 2016, 33(10): 173–182. DOI: https://doi.org/10.6052/j.issn.1000-4750.2015.03.0179. (in Chinese)

    Google Scholar 

  3. RANZI G, LEONI G, ZANDONINI R. State of the art on the time-dependent behaviour of composite steel-concrete structures [J]. Journal of Constructional Steel Research, 2013, 80(1): 252–263. DOI: https://doi.org/10.1016/j.jcsr.2012.08.005.

    Article  Google Scholar 

  4. QI Jing-jing, JIANG Li-zhong. Experimental study on seismic behaviors of steel-concrete composite frames [J]. Journal of Central South University, 2015, 22(11): 4396–4413. DOI: https://doi.org/10.1007/s11771-015-2988-6.

    Article  Google Scholar 

  5. MONETTO I, CAMPI F. Numerical analysis of two-layer beams with interlayer slip and step-wise linear interface law [J]. Engineering Structures, 2017, 144: 201–209. DOI: https://doi.org/10.1016/j.engstruct.2017.04.010.

    Article  Google Scholar 

  6. LIN J P, WANG G, BAO G, XU R. Stiffness matrix for the analysis and design of partial-interaction composite beams [J]. Construction and Building Materials, 2017, 156: 761–772. DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.154.

    Article  Google Scholar 

  7. FANG G, WANG J, LI S, ZHANG S. Dynamic characteristics analysis of partial-interaction composite continuous beams [J]. Steel and Composite Structures, 2016, 21(1): 195–216. DOI: https://doi.org/10.12989/scs.2016.21.1.195.

    Article  Google Scholar 

  8. ECSEDI I, BAKSA A. Analytical solution for layered composite beams with partial shear interaction based on Timoshenko beam theory [J]. Engineering Structures, 2016, 115: 107–117. DOI: https://doi.org/10.1016/j.engstruct.2016.02.034.

    Article  Google Scholar 

  9. CLARKE J L, MORLEY C T. Steel-concrete composite plates with flexible shear connectors [J]. Proceeding of the Institution of Civil Engineers, Part 2, 1972, 53(12): 557–568. DOI: https://doi.org/10.1680/iicep.1973.4901.

    Article  Google Scholar 

  10. SATO K. Composite plates of concrete slabs and steel plates [J]. Journal of Engineering Mechanics, 1991, 117(12): 2788–2803. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2788).

    Article  Google Scholar 

  11. SATO K. Elastic buckling of incomplete composite plates [J]. Journal of Engineering Mechanics, 1992, 118(1): 1–19. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1992)118:1(1).

    Article  MathSciNet  Google Scholar 

  12. WU Li-li, NIE Jian-guo. Elastic buckling of steel-concrete composite slabs subjected to pure shear load [J]. Journal of Southeast University (Natural Science Edition), 2011, 41(3): 622–629. DOI: https://doi.org/10.3969/j.issn.1001-0505.2011.03.037. (in Chinese)

    Google Scholar 

  13. ERKMEN R E, BRADFORD M A, CREWS K. Treatment of locking behaviour for displacement-based finite element analysis of composite beams [J]. Structural Engineering and Mechanics, 2014, 51(1): 163–180. DOI: https://doi.org/10.12989/sem.2014.51.1.163.

    Article  Google Scholar 

  14. ZHONG H, YU T. Flexural vibration analysis of an eccentric annular Mindlin plate [J]. Archive of Applied Mechanics, 2007, 77(4): 185–195. DOI: https://doi.org/10.1007/s00419-006-0083-z.

    Article  Google Scholar 

  15. ZHANG R, ZHONG H. A weak form quadrature element formulation for geometrically exact thin shell analysis [J]. Computers & Structures, 2018, 202: 44–59. DOI: https://doi.org/10.1016/j.compstruc.2018.03.002.

    Article  Google Scholar 

  16. YUAN S, DU J. Effective stress-based upper bound limit analysis of unsaturated soils using the weak form quadrature element method [J]. Computers and Geotechnics, 2018, 98: 172–180. DOI: https://doi.org/10.1016/j.compgeo.2018.02.008.

    Article  Google Scholar 

  17. OU X, ZHANG X, ZHANG R, YAO X, HAN Q. Weak form quadrature element analysis on nonlinear bifurcation and post-buckling of cylindrical composite laminates [J]. Composite Structures, 2018, 188: 266–277. DOI: https://doi.org/10.1016/j.compstruct.2018.01.007.

    Article  Google Scholar 

  18. SHEN Z, XIA J, CHENG P. Geometrically nonlinear dynamic analysis of FG-CNTRC plates subjected to blast loads using the weak form quadrature element method [J]. Composite Structures, 2019, 209: 775–788. DOI: https://doi.org/10.1016/j.compstruct.2018.11.009

    Article  Google Scholar 

  19. SHEN Z, XIA J, SONG D, CHENG P. A quadrilateral quadrature plate element based on Reddy’s higher-order shear deformation theory and its application [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1093–1103. DOI: https://doi.org/10.6052/0459-1879-18-225. (in Chinese)

    Google Scholar 

  20. SHEN Z Q, ZHONG H. Static and vibrational analysis of partially composite beams using the weak-form quadrature element method [J]. Mathematical Problems in Engineering, 2012: 974023. DOI: https://doi.org/10.1155/2012/974023.

    MathSciNet  MATH  Google Scholar 

  21. SHEN Zhi-qiang, ZHONG Hong-zhi. Geometrically nonlinear quadrature element analysis of composite beams with partial interaction [J]. Engineering Mechanics, 2013, 30(3): 270–275. DOI: https://doi.org/10.7158/M12-056.2013.11.1. (in Chinese)

    Google Scholar 

  22. SHEN Zhi-qiang, ZHONG Hong-zhi. Long-term quadrature element analysis of steel-concrete composite beams with partial interactions and shear-lag effect [J]. J Tsinghua Univ. (Sci & Tech), 2013, 53(4): 493–498. DOI: https://doi.org/10.16511/j.cnki.qhdxxb.2013.04.022. (in Chinese)

    Google Scholar 

  23. SHEN Z, XIA J, WU K, HU Q, CHENG P. Flexural and free vibrational analysis of tapered partially steel-concrete composite beams using the weak form quadrature element method [J]. Journal of National University of Defense Technology, 2018, 40(1): 42–48. DOI: https://doi.org/10.11887/j.cn.201801007. (in Chinese)

    Google Scholar 

  24. DAVIS P I, RABINOWITZ P. Methods of numerical integration [M]. 2nd ed. Orlando: Academic Press, 1984.

    MATH  Google Scholar 

  25. CHANG S. Differential quadrature and its application in engineering [M]. London: Springer, 2000.

    MATH  Google Scholar 

  26. WANG X. Differential quadrature and differential quadrature based element methods [M]. Oxford: Elsevier, 2015.

    Google Scholar 

  27. ZIENKIEWICZ O C, TAYLOR R L. The finite element method for solid and structural mechanics [M]. 7th ed. Oxford: Elsevier, 2014.

    MATH  Google Scholar 

  28. TIMOSHENKO S P. Theory of elastic stability [M]. 2nd ed. Toronto: McGraw-Hill, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-qiang Shen  (申志强).

Additional information

Foundation item: Project(51508562) supported by the National Natural Science Foundation of China; Project(ZK18-03-49) supported by the Scientific Research Program of National University of Defense Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Shen, Zq., Liu, K. et al. Flexural and eigen-buckling analysis of steel-concrete partially composite plates using weak form quadrature element method. J. Cent. South Univ. 26, 3087–3102 (2019). https://doi.org/10.1007/s11771-019-4238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4238-9

Key words

关键词

Navigation