Skip to main content
Log in

Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network

基于时滞模糊灰色认知网络的铁矿沉铁过程建模方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The goethite iron precipitation process consists of several continuous reactors and involves a series of complex chemical reactions, such as oxidation reaction, hydrolysis reaction and neutralization reaction. It is hard to accurately establish a mathematical model of the process featured by strong nonlinearity, uncertainty and time-delay. A modeling method based on time-delay fuzzy gray cognitive network (T-FGCN) for the goethite iron precipitation process was proposed in this paper. On the basis of the process mechanism, experts’ practical experience and historical data, the T-FGCN model of the goethite iron precipitation system was established and the weights were studied by using the nonlinear hebbian learning (NHL) algorithm with terminal constraints. By analyzing the system in uncertain environment of varying degrees, in the environment of high uncertainty, the T-FGCN can accurately simulate industrial systems with large time-delay and uncertainty and the simulated system can converge to steady state with zero gray scale or a small one.

摘要

针铁矿沉铁过程是由多个连续反应器级联,并且包含氧化反应、还原反应以及中和反应等一系 列复杂化学反应的复杂过程,具有强非线性、不确定性及大时滞性等特点,难以建立精确的数学模型。 本文提出了一种基于T-FGCN(Time-delay Fuzzy Gray Cognitive Network,T-FGCN)的针铁矿沉铁过 程的建模方法。根据过程机理、专家经验和历史数据,建立针铁矿沉铁系统的T-FGCN 模型,利用带 终端约束的非线性Hebbian 学习算法(Nonlinear Hebbian Learning,NHL)对模型权值进行学习。通过 在不同程度上的不确定性环境下对系统进行分析,结果表明,T-FGCN 建模方法能在不确定性高的环 境下对具有大时滞的工业系统进行较为精确的模拟,系统稳定状态值能收敛到一个灰度为零或者灰度 很小的灰数平衡点。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Dong-bo, JIANG Ji-mu. Present situation and development trend of zinc smelting technology at home and abroad [J]. China Metal Bulletin, 2015(6): 41–44. (in Chinese)

    Google Scholar 

  2. XIE Y F, XIE S W, LI Y G, YANG C H, GUI W H. Dynamic modeling and optimal control of goethite process based on the rate-controlling step [J]. Control Engineering Practice, 2017, 58: 54–65.

    Article  Google Scholar 

  3. CHEN Ning, FAN Yong, GUI Wei-hua, YANG Chun-hua, JIANG Zhao-hui. Hybrid modeling and control of iron precipitation by goethite process [J]. Chinese Journal of Nonferrous Metals, 2014, 24(1): 254–261. (in Chinese)

    Google Scholar 

  4. ANNINOU P A, GROUMPOS P P. Modeling of Parkinson’s disease using fuzzy cognitive maps and non-Linear Hebbian learning [J]. International Journal on Artificial Intelligence Tools, 2014, 23(5): 1450010–1450026.

    Article  Google Scholar 

  5. FATAHI S, MORADI H. A fuzzy cognitive map model to calculate a user’s desirability based on personality in e-learning environments [J]. Computers in Human Behavior, 2016, 63: 272–281.

    Article  Google Scholar 

  6. OBIEDAT M, SAMARASINGHE S. A novel semiquantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems [J]. Applied Soft Computing, 2016, 48: 91–110.

    Article  Google Scholar 

  7. JIANG Zhao-hui, LI Xue-ming, GUI Wei-hua. All parameters adaptive predictive control strategy for long time-delay system [J]. Journal of Central South University (Science and Technology), 2012, 43(1): 200–206. (in Chinese)

    Google Scholar 

  8. WANG Y Y, CHEN J W, GU L Y, LI X D. Time delay control of hydraulic manipulators with continuous nonsingular terminal sliding mode [J]. Journal of Central South University, 2015, 22(12): 4616–4624.

    Article  Google Scholar 

  9. CHEN F W, LIU T. Iterative identification of discrete-time output-error model with time delay [J]. Journal of Central South University, 2017, 24(3): 647–654.

    Article  Google Scholar 

  10. BOURGANI E, STYLIOS C D, MANIS G, GEORGOULOS V C. Integrated approach for developing timed fuzzy cognitive maps [C]// 7th IEEE International Conference on Intelligent Systems. 2015, 322: 193–204.

    Google Scholar 

  11. NEOCLEOUS C, SCHIZAS C N. Modeling socio-politicoeconomic systems with time-dependent fuzzy cognitive maps [C]// IEEE International Conference on Fuzzy Systems. 2012, 19: 1–7.

    Google Scholar 

  12. PARK K S, KIM S H. Fuzzy cognitive maps considering time relationships [J]. International Journal of Human-Computer Studies, 1995, 42(2): 157–168.

    Article  Google Scholar 

  13. BOURGANI E, STYLIOS C D, MANIS G, GEORGOULOS V C. Timed fuzzy cognitive maps for supporting obstetricians’ decisions [J]. IFMBE Proceedings, 2015, 45: 753–756.

    Article  Google Scholar 

  14. LEE I K, KWON S H. Learning rule for time delay in fuzzy cognitive maps [J]. IEICE Transactions on Information & Systems, 2010, 93(11): 3153–3157.

    Article  Google Scholar 

  15. ZHANG W, LIU L, ZHU Y C. Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises [J]. Expert Systems with Applications, 2008, 35(4): 1583–1592.

    Article  Google Scholar 

  16. ZHANG J Y, LIU Z Q, ZHOU S. Dynamic domination in fuzzy causal networks [J]. IEEE Transactions on Fuzzy Systems, 2006, 14(1): 42–57.

    Article  Google Scholar 

  17. KHEIRANDISH A, MOTLAGH F, SHAFIABADY N, DAHARI M, WAHAB A K A. Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system [J]. Applied Energy, 2017, 202: 20–31.

    Article  Google Scholar 

  18. KOTTAS T L, BOUTALIS Y S, CHRISTODOULOU M A. Fuzzy cognitive network: A general framework [J]. Intelligent Decision Technologies, 2007, 1(4): 183–196.

    Article  Google Scholar 

  19. KOTTAS T, STIMONIARIS D, TSIAMITROS D, KIKIS V, BOUTALIS Y, DIALYNAS E. New operation scheme and control of Smart Grids using Fuzzy Cognitive Networks [C]// IEEE Power Tech Eindhoven Conference. 2015, 151: 1–5.

    Google Scholar 

  20. DENG Ju-long. Gray system (Society*Economy) [M]. Beijing: National Defense Industry Press, 1985: 36–105. (in Chinese)

    Google Scholar 

  21. JI Pei-rong. Unbiased gray prediction model [J]. Journal of Systems Engineering and Electronics, 2000, 22(6): 78–80. (in Chinese)

    MathSciNet  Google Scholar 

  22. JI Pei-rong. Research on the characteristics of gray prediction model [J]. System Engineering-Theory & Practice, 2001, 9: 105–108. (in Chinese)

    Google Scholar 

  23. MA X, LIU Z. Application of a novel time-delayed polynomial grey model to predict the natural gas consumption in China [J]. Journal of Computational & Applied Mathematics, 2017, 324: 17–24.

    Article  MathSciNet  MATH  Google Scholar 

  24. DING S, DANG Y G, LI X M, WANG J J, ZHAO K. Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model [J]. Journal of Cleaner Production, 2017, 162: 1527–1538.

    Article  Google Scholar 

  25. PAPAGEORGIOU E I, STYLIOS C D, GROUMPOS P P. Active Hebbian learning algorithm to train fuzzy cognitive maps [J]. International Journal of Approximate Reasoning, 2004, 37(3): 219–249.

    Article  MathSciNet  MATH  Google Scholar 

  26. WU K, LIU J. Robust learning of large-scale fuzzy cognitive maps via the lasso from noisy time series [J]. Knowledge-Based Systems, 2016, 113: 23–38.

    Article  Google Scholar 

  27. NATARAJAN R, SUBRAMANIAN J, PAPAGEORGIOU E I. Hybrid learning of fuzzy cognitive maps for sugarcane yield classification [J]. Computers and Electronics in Agriculture, 2016, 127: 147–157.

    Article  Google Scholar 

  28. CHEN Ning, PENG Jun-jie, WANG Lei, GUO Yu-qian, GUI Wei-hua. Fuzzy grey cognitive networks modeling and its application [J]. Acta Automatica Sinica, 2018, 44(7): 1227–1236. (in Chinese)

    MATH  Google Scholar 

  29. CHEN Ning, WANG Lei, PENG Jun-jie, LIU Bo, GUI Wei-hua. Improved nonlinear Hebbian learning algorithm based on fuzzy cognitive networks model [J]. Control Theory and Applications, 2016, 33(10): 1273–1280. (in Chinese)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Chen  (陈宁).

Additional information

Foundation item: Project(61673399) supported by the National Natural Science Foundation of China; Project(2017JJ2329) supported by the Natural Science Foundation of Hunan Province, China; Project(2018zzts550) supported by the Fundamental Research Funds for Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Zhou, Jq., Peng, Jj. et al. Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network. J. Cent. South Univ. 26, 63–74 (2019). https://doi.org/10.1007/s11771-019-3982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-3982-1

Key words

关键词

Navigation