Skip to main content
Log in

NO adsorption and temperature programmed desorption on K2CO3 modified activated carbons

K2CO3 改性活性炭上 NO 的吸附和程序升温脱附

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Fuel cell stacks as the automotive power source can be severely poisoned by a trace amount of NOx in atmosphere, which makes it necessary to provide clean air for fuel cell vehicles. In this work, activating commercial activated carbons with K2CO3 for the large enhancement of NO capture was studied. K2CO3 modified activated carbons (K2CO3 ACs) were prepared by impregnating activate carbons in K2CO3 solution under ultrasound treatment, followed by temperature programmed baking at 800 °C. The dynamic NO flow tests on K2CO3 ACs at room temperature indicated that NO adsorption capacity reached the maximum (96 mg/g) when K2CO3 loading was 19.5 wt%, which corresponded to a specific surface area of 1196.1 m2/g and total pore volume of 0.70 cm3/g. The ten-fold enhancement of NO adsorption on K2CO3 ACs compared to the unimpregnated activated carbon was mainly attributed to the formation of potassium nitrite, which was confirmed by FTIR and temperature programmed desorption measurements. Regeneration tests of NO adsorption on the optimum sample revealed that 76% of the NO adsorption capacity could be remained after the fourth cycle.

摘要

燃料电池易受到空气中的 NOx 的影响, 因此有必要净化进入燃料电池汽车的空气。 本文研究了通过 K2CO3 增强商用活性炭吸附 NO 的性能。 K2CO3 改性活性炭 (K2CO3 ACs) 是通过超声波环境下的溶液浸渍活性炭, 然后在 800 °C 高温下热处理得到的。 NO 流量曲线表明, 当 K 2CO3 溶液的浓度达到 19.5 wt% 时, NO 在室温下的吸附容量最高, 可达 96 mg/g, 这相当于 1196.1 m2/g 的比表面积和 0.70 cm3/g 的总孔容。 与未经改性的活性炭相比, K2CO3 ACs 的吸附能力提升了十倍; 这主要应归因于亚硝酸钾的生成, 这也经FTIR 和程序升温脱附实验结果得以证明。 此外, 该样品还表现出一定的可再生性, 经四次 NO 吸附和脱附实验室, 它还能保持 76% 的初始吸附容量。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BALLARI M M, HUNGER M, HÜSKEN G, BROUWERS H J H. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide [J]. Applied Catalysis B, 2010, 95: 245–254.

    Article  Google Scholar 

  2. IRWIN J G, WILLIAMS M L. Acid-rain: Chemistry and transport [J]. Environmental Pollution, 1988, 50: 29–59.

    Article  Google Scholar 

  3. LAWRENCE M G, CRUTZEN P J. Influence of NOx emissions from ships on tropospheric photochemistry and climate [J]. Nature, 1999, 402: 167–170.

    Article  Google Scholar 

  4. JING Fen-ning, HOU Ming, SHI Wei-yu, FU Jie, YU Hong-mei, MING Ping-wen, YI Bao-lian. The effect of ambient contamination on PEMFC performance [J]. Journal of Power Sources, 2007, 166: 172–176.

    Article  Google Scholar 

  5. MOHTADE R, LEE W K, VANZEE J W. Assessing durability of cathodes exposed to common air impurities [J]. Journal of Power Sources, 2004, 138: 216–225.

    Article  Google Scholar 

  6. YANG Dai-jun, MA Jian-xin, XU Lin, WU Min-zhong, WANG Hai-jiang. The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell [J]. Electrochimic Acta, 2006, 51: 4039–4044.

    Article  Google Scholar 

  7. GUAN Bin, ZHAN R, LIN He, HUANG Zhen. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust [J]. Applied Thermal Engineering, 2014, 66: 395–414.

    Article  Google Scholar 

  8. FU Meng-fan, LI Cai-ting, LU Pei, QU Long, ZHANG Meng-ying, ZHOU Yang, YU Min-ge, FANG Yang. A review on selective catalytic reduction of NOx by supported catalysts at 100–300 °C-catalysts, mechanism, kinetics [J]. Catalytic Science and Technology, 2014, 4: 14–25.

    Article  Google Scholar 

  9. KLOSE W, RINCÓN S. Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour [J]. Fuel, 2007, 86: 203–209.

    Article  Google Scholar 

  10. NEATHERY J K, RUBEL A M, STENCEL J M. Uptake of NOx by activated carbons: Bench-scale and pilot-planting testing [J]. Carbon, 1997, 35: 1321–1327.

    Article  Google Scholar 

  11. SHIRAHAMA N, MOON S H, CHOI K H, ENJOJI T, KAWANO S, KORAI Y, TANOURA M, MOCHIDA I. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers [J]. Carbon, 2002, 40: 2605–2611.

    Article  Google Scholar 

  12. GHOUMA I, JEGUIRIM M, DORGE S, LIMOUSY L, GHIMBEU C M, OUEDERNI A. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature [J]. Comptes Rendus Chimie, 2015, 18: 63–74.

    Article  Google Scholar 

  13. POTYKOVÁ I, OBALOVÁ L, KUBOŇOVÁ L, OBROUCKA K. The balancing of NO concentration fluctuations by adsorption/desorption process on activated carbon [J]. Separation and Purification Technology, 2011, 78: 245–248.

    Article  Google Scholar 

  14. HAYASHI J, KAZEHAYA A, MUROYAMA K, WATKINSON A P. Preparation of activated carbon from lignin by chemical activation [J]. Carbon, 2000, 38: 1873–1878.

    Article  Google Scholar 

  15. LI Xin, WANG Guang-zhi, LI Wei-guang, WANG Ping, SU Cheng-yuan. Adsorption of acid and basic dyes by sludge-based activated carbon: Isotherm and kinetic studies [J]. Journal of Central South University, 2015, 22(1): 103–113.

    Article  Google Scholar 

  16. KILIÇ M, APAYDIN-VAROL E, PÜTÜN A E. Preparation and surface characterization of activated carbons from Euphorbia rigid by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4 [J]. Applied Surface Science, 2012, 261: 247–254.

    Article  Google Scholar 

  17. MCKEE D W. Mechanisms of the alkali metal catalyzed gasfication of carbon [J]. Fuel, 1983, 62: 170–175.

    Article  Google Scholar 

  18. ABBAS A F, AHMED M J. Mesoporous activated carbon from date stones by one-step microwave assisted K2CO3 pyrolysis [J]. Water Process Engineering, 2016, 9: 201–207.

    Article  Google Scholar 

  19. FOO K Y, HAMEED B H. Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating [J]. Bioresource Technology, 2012, 111: 425–432.

    Article  Google Scholar 

  20. GURTEN I I, OZMAK M, YAGMUR E, AKTAS Z. Preparation and characterisation of activated carbon from waste tea using K2CO3 [J]. Biomass Bioenergy, 2012, 37: 73–81.

    Article  Google Scholar 

  21. LI Xian-fa, ZUO Yong, ZHANG Ying, FU Yao, GUO Qing-xiang. In situ preparation of K2CO3 supported Kraft lignin activated carbon as solid base catalyst for biodiesel production [J]. Fuel, 2013, 113: 435–442.

    Article  Google Scholar 

  22. ADINATA D, DAUD W M A W, AROUA M K. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3 [J]. Bioresource Technology, 2007, 98: 145–149.

    Article  Google Scholar 

  23. XIANG Xiao-xia, LIU En-hui, LI Li-min, YANG Yan-jing, SHEN Hai-jie, HUANG Zheng-zheng, TIAN Ying-ying. Activated carbon prepared from polyaniline base by K2CO3 activation for application in supercapacitor electrodes [J]. Journal of Solid State Electrochemistry, 2011, 15: 579–585.

    Article  Google Scholar 

  24. SUN Yong, YANG Gang, WANG Yun-shan. Production of activated carbon by K2CO3 activation treatment of furfural production waste and its application in gas storage [J]. Environmental Progress and Sustainable Energy, 2011, 30: 648–657.

    Article  Google Scholar 

  25. KAPTEIJN F, JURRIAANS J, MOULIJN J A. Formation of intercalate-like structures by heat treatment of K2CO3-carbon in an inert atmosphere [J]. Fuel, 1983, 62: 249–251.

    Article  Google Scholar 

  26. YAO Xiao-long, LI Li-qing, LI Hai-long, CHI Dong. Water vapor adsorption in activated carbon modified with hydrophilic organic salts [J]. Journal of Central South University, 2015, 22 (2): 478–486.

    Article  Google Scholar 

  27. AL-RAHBI A S, WILLIAMS P T. Production of activated carbons from waste tyres for low temperature NOx control [J]. Waste Management, 2016, 49: 188–195.

    Article  Google Scholar 

  28. FOO K Y, HAMEED B H. Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation [J]. Bioresource Technology, 2011, 102: 9814–9817.

    Article  Google Scholar 

  29. JIN Xiao-juan, YU Zhi-ming, WU Yu. Preparation of activated carbon from lignin obtained by straw pulping by KOH and K2CO3 chemical activation [J]. Cellulose Chemistry Technology, 2012, 46: 79–85.

    Google Scholar 

  30. OKMAN I, KARAGÖZ S, TAY T, ERDEM M. Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide [J]. Applied Surface Science, 2014, 293: 138–142.

    Article  Google Scholar 

  31. RODENAS M A L, AMOROS D C, SOLANO A L. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism [J]. Carbon, 2003, 41: 267–275.

    Article  Google Scholar 

  32. LEE Y W, CHOI D K, PARK J W. Surface chemical characterization using AES/SAM and ToF-SIMS on KOH-impregnated activated carbon by selection adsorption of NOx [J]. Industrial & Engineering Chemistry Research, 2001, 40: 3337–3345.

    Article  Google Scholar 

  33. SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry, 1985, 57: 603–619.

    Article  Google Scholar 

  34. ZENG Zheng, LU Pei, LI Cai-ting, MAI Lei, LI Zhi, ZHANG Yun-sheng. Removal of NO by carbonaceous materials at room temperature: A review [J]. Catalysis & Science Technology, 2012, 2: 2188–2199.

    Article  Google Scholar 

  35. MOCHIDA I, SHIRAHAMA N, KAWANO S, KORAI Y, YASUTAKE A, TANOURA M, FUJII S, YOSHIKAWA M. NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area [J]. Fuel, 2000, 79: 1713–1723.

    Google Scholar 

  36. JEGUIRIM M, TSCHAMBER V, BRILHAC J F, EHRBURGER P. Interaction mechanism of NO2 with carbon black: effect of surface oxygen complexes [J]. Journal of Analytical and Applied Pyrolysis, 2004, 72: 171–181.

    Article  Google Scholar 

  37. STANMORE B R, TSCHAMBER V, BRILHAC J F. Oxidation of carbon by NOx, with particular reference to NO2 and N2O [J]. Fuel, 2008, 87: 131–146.

    Article  Google Scholar 

  38. MA Xiao-wei, YANG Dai-jun, ZHOU Wei, ZHANG Cun-man, PAN Xiang-min, XU Lin, WU Min-zhong, MA Jian-xin. Evaluation of activated carbon adsorbent for fuel cell cathode air filtration [J]. Journal of Power Sources, 2008, 175: 383–389.

    Article  Google Scholar 

  39. WANG J, KASKEL S. KOH activation of carbon-based materials for energy storage [J]. Journal of Material Chemistry, 2012, 22: 23710–23725.

    Article  Google Scholar 

  40. CLAUDINO A, SOARES J L, MOREIRA R F P M, JOSÉ H J. Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures [J]. Carbon, 2004, 42: 1483–1490.

    Article  Google Scholar 

  41. LEE Y W, CHOI D K, PARK J W. Performance of fixed-bed KOH impregnated activated carbon adsorber for NO and NO2 removal with oxygen [J]. Carbon, 2002, 40: 1409–1417.

    Article  Google Scholar 

  42. LEE Y W, PARK J W, JUN S J, CHOI D K, YIE J E. NOx adsorption-temperature programmed desorption and surface molecular ions distribution by activated carbon with chemical modification [J]. Carbon, 2004, 42: 59–69.

    Article  Google Scholar 

  43. CHEN Yao, ZHANG Xiong, ZHANG Hai-tao, SUN Xian-zhong, ZHANG Da-cheng, MA Yan-wei. Highperformance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation [J]. RSC Advances, 2012, 2: 7747–7753.

    Article  Google Scholar 

  44. MILLER F A, WILKINS C H. Infrared spectra and characteristic frequencies of inorganic ions [J] Analytic Chemistry, 1952, 24: 1253–1294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lv  (吕洪).

Additional information

Foundation item: Project(2018YFB0105303) supported by the Ministry of Science and Technology of China; Project(17DZ1200702) supported by the Shanghai Science and Technology Committee, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Dj., Ma, Xw., Lv, H. et al. NO adsorption and temperature programmed desorption on K2CO3 modified activated carbons. J. Cent. South Univ. 25, 2339–2348 (2018). https://doi.org/10.1007/s11771-018-3918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3918-1

Key words

关键词

Navigation