Skip to main content
Log in

Quantitative and qualitative correlation analysis of optimal route discovery for vehicular ad-hoc networks

车载 ad-hoc 网络最优路由的定量与定性相关性分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.

摘要

车载 ad-hot 网络(VANETs)是智能交通系统中提高道路安全的一个重要领域。车辆之间的相 互作用都包含在VANETs 中。针对VANET 性能的提高开展多项实验。所遇到的挑战是获得各项受限 服务质量的指标。为了解决这个问题, 本研究通过关注碰撞, 旅行成本, 意识, 拥堵等服务质量指标 获得了车辆路由问题的成本设计。由于遗传算法(GA)具有算法复杂, 非辅助突变, 收敛慢, 全局 最大化, 基因编码多面特征等问题, 本文采用狮群算法(LA)进行更好地拟合。通过成本分析, 收 敛分析和复杂性分析对算法的计算过程进行分析。在得到各种成本函数之间的相关分析的基础上, 对 定量结果的数值分析进行了研究。结果表明, LA 的性能优于GA, 降低了复杂度和路由成本。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BITAM S, MELLOUK A, ZEADALLY S. Bio-inspired routing algorithms survey for vehicular ad hoc networks [J]. IEEE Communication Surveys and Tutorials, 2015, 17(2): 843–867.

    Article  Google Scholar 

  2. ZEADALLY S, HUNT R, CHEN Y S, IRWIN A, HASSAN A. Vehicular ad hoc networks (VANETs): Status, results, and challenges [J]. Telecommun Syst, 2012, 50(4): 217–241.

    Article  Google Scholar 

  3. BEYLOT A L, LABIOD H. CONVOY: A new cluster-based routing protocol for vehicular networks, in vehicular networks: Models and algorithms [M]. London, UK: John Wiley & Sons, 2013, 3: 91–139.

    Google Scholar 

  4. BAI F, KRISHNAN H, SADEKAR V, HOLLAND G, ELBATT T. Towards characterizing and classifying communication-based automotive applications from a wireless networking perspective [M]. San Francisco, CA, USA: Autonet, 2006.

    Google Scholar 

  5. WU C, OHZAHATA S, KATO T. Flexible, portable, and practicable solution for routing in VANETs: A fuzzy constraint q-learning approach [J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4251–4263.

    Article  Google Scholar 

  6. WANG W, XIE F, CHATTERJEE M. Small-scale and large-scale routing in vehicular ad hoc networks [J]. IEEE Trans Veh Technol, 2009, 58(9): 5200–5213.

    Article  Google Scholar 

  7. WU C, KUMEKAWA K, KATO T. Distributed reinforcement learning approach for vehicular ad hoc networks [J]. IEICE Trans Commun, 2010, E93-B(6): 1431–1442.

    Article  Google Scholar 

  8. GOONEWARDENE R T, ALI F H, STIPIDIS E. Robust mobility adaptive clustering scheme with support for geographic routing for vehicular ad hoc networks [J]. IET Intell Transp Syst, 2009, 3(2): 148–158.

    Article  Google Scholar 

  9. ZHANG X M, WANG E B, XIA J J, SUNG D K. An estimated distance-based routing protocol for mobile ad hoc networks [J]. IEEE Trans Veh Technol, 2011, 60(7): 3473–3484.

    Article  Google Scholar 

  10. RAJAKUMAR B R. Lion algorithm for standard and large scale bilinear system identification: A global optimization based on Lion’s social behavior [C]//2014 IEEE Congress on Evolutionary Computation (CEC). Beijing: IEEE, 2014: 2116–2123.

    Google Scholar 

  11. PACKER C, PUSEY A E. Male takeovers and female reproductive parameters: A simulation of oestrous synchrony in lions (Panthera leo) [J]. Animal Behavior, 1983, 31(2): 334–340.

    Article  Google Scholar 

  12. RAJAKUMAR B R. The Lion’s Algorithm: A new nature-inspired search algorithm [J]. Procedia Technology, 2012, 6: 126–135. DOI: https://doi.org/10.1016/j.protcy.2012.10.016.

    Article  Google Scholar 

  13. EIZA M H, OWENS T, NI Q, SHI Q. Situation-aware QoS routing algorithm for vehicular ad hoc networks [J]. IEEE Transactions on Vehicular Technology, 2015, 64(12): 5520–5535.

    Article  Google Scholar 

  14. ZHOU Y, WANG J. A local search-based multi-objective optimization algorithm for multi-objective vehicle routing problem with time windows [J]. IEEE Journal of Systems, 2015, 9(3): 1100–1113.

    Article  MathSciNet  Google Scholar 

  15. YANG H, YANG S, XU Y, CAO E, LAI M, DONG Z. Electric vehicle route optimization considering time-of-use electricity price by learnable partheno-genetic algorithm [J]. IEEE Transactions on Smart Grid, 2015, 6(2): 657–666.

    Article  Google Scholar 

  16. AHRENS M, GESTER M, KLEWINGHAUS N, MULLER D, PEYER S, SCHULTE C, TELLEZ G. Detailed routing algorithms for advanced technology nodes [J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2015, 34(4): 563–576.

    Article  Google Scholar 

  17. EIZA M H, OWENS T, NI Q. Secure and robust multi-constrained QoS aware routing algorithm for VANETs [J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(1): 32–45.

    Article  Google Scholar 

  18. BAUER H, IONGH H H, SILVESTRE I. Lion social behaviour in the west and central African savanna belt [J]. Mammalian Biology, 2003, 68(1): 239–243.

    Article  Google Scholar 

  19. KLIR G J, CLAIR U S, BO Y. Fuzzy set theory: Foundations and applications [M]. Englewood Cliffs, NJ, USA: Prentice-Hall, 1997.

    Google Scholar 

  20. FOGEL L J, OWENS A J, WALSH M J. Artificial intelligence through simulated evolution [M]. New York: Wiley Publishing, 1966.

    MATH  Google Scholar 

  21. DOERR B, HAPP E. CHRISTIAN KLEIN: Crossover can provably be useful in evolutionary computation [J]. Theor Comput Sci, 2012, 425: 17–33.

    Article  MATH  Google Scholar 

  22. BACK T, HOFFMEISTER F, SCHWEFEL H P. An overview of evolutionary algorithms for parameter optimization [J]. Journal of Evolutionary Computation, 1993, 1(1): 1–24.

    Article  Google Scholar 

  23. JONG K A D. An analysis of the behavior of a class of genetic adaptive systems [D]. Computer and Communication Sciences, University of Michigan, Ann Arbor, 1975.

    Google Scholar 

  24. PACKER C, PUSEY A E. Divided we fall: Cooperation among lions [J]. Scientific American, 1997, 276: 52–59.

    Article  Google Scholar 

  25. PACKER, PUSEY. Cooperation and competition within coalition of male lions: Kin selection or game theory [J]. Macmillan Journals, 1982, 296(5859): 740–742.

    Google Scholar 

  26. KOHONEN T. Self-organization and associative memory [M]. Berlin, Germany: Springer-Verlag, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagh B. Mukund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukund, W.B., Gomathi, N. Quantitative and qualitative correlation analysis of optimal route discovery for vehicular ad-hoc networks. J. Cent. South Univ. 25, 1732–1745 (2018). https://doi.org/10.1007/s11771-018-3864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3864-y

Key words

关键词

Navigation