Skip to main content
Log in

Experimental study on soil improvement with stone columns and granular blankets

石柱与颗粒覆盖增强土壤的实验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Stone column is one of the soil stabilizing methods that is used to increase bearing capacity and decrease the settlement of soft soils. Reinforced and unreinforced granular blankets are now being utilized to overcome the problems of soft soils. In this research, the bearing capacity of stone columns, granular blanket, and a combination of both methods in reinforced and unreinforced modes were studied using scaled physical models. Results show that using granular blanket, stone column, and combination of both improves bearing capacity of soft soils. Using geogrid as the reinforcement of granular blankets and geotextile as stone-column encasement increases the efficiency of granular blankets and stone columns significantly. Additionally, in the case of using geotextile around the stone column, the stress concentration ratio of the stone column will increase as well as its rigidity and bearing capacity.

摘要

石柱是稳定土壤的方法之一,用以增加承载能力和减少软土的沉降。增强和非增强颗粒覆盖现 在也被用以解决软土问题。本文采用缩小物理模型,研究石柱、颗粒覆盖和两者组合在增强和非增强 的模式下对土壤承载能力的影响。结果表明,采用颗粒覆盖、石柱或两者组合可提高软土的承载能力。 利用土工格栅对颗粒覆盖进行增强以及利用土工布包裹石柱可显著提高颗粒覆盖和石柱的效率。此 外,采用土工布包裹石柱,石柱的应力集中比,刚性和承载能力都得到提高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AKIMUSURU J O, AKINBOLADE J A. Stability of loaded footing on reinforced soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1981, 107(6): 819–827.

    Google Scholar 

  2. GUIDO V, BIESIADECKI G, SULLIVAN M. Bearing capacity of a geotextile reinforced foundation [C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. 1985: 1777–1780.

    Google Scholar 

  3. YETIMOGLU T, WU J T, SAGLAMER A. Bearing capacity of rectangular footings on geogrid-reinforced sand [J]. Journal of Geotechnical Engineering, 1994, 120: 2083–2099.

    Article  Google Scholar 

  4. HATAF N, BAZIAR A. Use of tire shreds for bearing capacity improvement of shallow footing on sand [C]//Proceedings of the 3rd Int Conf on Ground Improvement Techniques. 2000: 189–194.

    Google Scholar 

  5. ABDRABBO F M, GAAVER K E, ELWAKIL A Z. Behavior of square footing on single reinforced soil [C]//Procceding of Geo-Support, ASCE. Orlando, Florida, 2004: 1015–1026

    Google Scholar 

  6. PATRA C, DAS B, ATALAR C. Bearing capacity of embedded strip foundation on geogrid-reinforced sand [J]. Geotextiles and Geomembranes, 2005, 23: 454–462.

    Article  Google Scholar 

  7. SITHARAM T, SIREESH S. Behavior of embedded footings supported on geogrid cell reinforced foundation beds [J]. Geotechnical Testing Journal, 2005, 28(5): 1–12.

    Google Scholar 

  8. ZIDAN A. Numerical study of behavior of circular footing on geogrid-reinforced sand under static and dynamic loading [J]. Geotechnical and Geological Engineering, 2012, 30: 499–510.

    Article  Google Scholar 

  9. KUMAR A, WALIA B. Bearing capacity of square footings on reinforced layered soil [J]. Geotechnical and Geological Engineering, 2006, 24: 1001–1008.

    Article  Google Scholar 

  10. ADAMS M T, COLLIN J G. Large model spread footing load tests on geosynthetic reinforced soil foundations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123: 66–72.

    Article  Google Scholar 

  11. GREENWOOD D A. Mechanical improvement of soils below ground surface [C]//Proceedings of Ground Improvement Conference. Institute of Civil Engineering, 1970: 9–29.

    Google Scholar 

  12. HUGHES J M O, WITHERS N J. Reinforcing of soft cohesive soils with stone columns [J]. Ground Engineering, 1974, 7(3): 42–49.

    Google Scholar 

  13. MCKENNA J, EYRE W, WOLSTENHOLME D. Performance of an embankment supported by stone columns in soft ground [J]. Geotechnique, 1975, 25: 51–59.

    Article  Google Scholar 

  14. VAN IMPE W F. Soil improvement techniques and their evolution [M]. Rotterdam, Netherlands: Balkema, 1989.

    Google Scholar 

  15. MURUGESAN S, RAJAGOPAL K. Shear load tests on stone columns with and without geosynthetic encasement [J]. Geotechnical Testing Journal, 2009, 32(1): 1–10.

    Google Scholar 

  16. YOO C. Performance of geosynthetic-encased stone columns in embankment construction: numerical investigation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136: 1148–1160.

    Article  Google Scholar 

  17. YOO C, LEE D. Performance of geogrid-encased stone columns in soft ground: Full-scale load tests [J]. Geosynthetics International, 2012, 19: 480–490.

    Article  Google Scholar 

  18. ZHANG Y, CHAN D, WANG Y. Consolidation of composite foundation improved by geosynthetic-encased stone columns [J]. Geotextiles and Geomembranes, 2012, 32: 10–17.

    Article  Google Scholar 

  19. ALMEIDA M, HOSSEINPOUR I, RICCIO M. Performance of a geosynthetic-encased column (GEC) in soft ground: Numerical and analytical studies [J]. Geosynthetics International, 2013, 20: 252–262.

    Article  Google Scholar 

  20. DASH S K, BORA M C. Influence of geosynthetic encasement on the performance of stone columns floating in soft clay [J]. Canadian Geotechnical Journal, 2103, 50: 754–765.

    Article  Google Scholar 

  21. ELSAWY M. Behaviour of soft ground improved by conventional and geogrid-encased stone columns, based on FEM study [J]. Geosynthetics International, 2013, 20: 276–285.

    Article  Google Scholar 

  22. MAHESHWARI P, CHAUHAN V B. Beams on extensible geosynthetics and stone-column-improved soil [J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2013, 166: 233–247.

    Article  Google Scholar 

  23. MCCABE B, KAMRAT-PIETRASZEWSKA D, EGAN D. Ground heave induced by installing stone columns in clay soils [J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 2013, 166: 589–593.

    Article  Google Scholar 

  24. SHAHU J, REDDY Y. Estimating long-term settlement of floating stone column groups [J]. Canadian Geotechnical Journal, 2014, 51: 770–781.

    Article  Google Scholar 

  25. ALI K, SHAHU J, SHARMA K. Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement [J]. Geosynthetics International, 2014, 21: 103–118.

    Article  Google Scholar 

  26. RAITHEL M, KEMPFERT H G, KIRCHNER A. Geotextileencased columns (GEC) for foundation of a dike on very soft soils [C]//Proceedings of the Seventh International Conference on Geosynthetics. Nice, France, 2002: 1025–1028.

    Google Scholar 

  27. MURUGESAN S, RAJAGOPAL K. Model tests on geosynthetic encased granular columns [J]. Geosynthetics International, 2007, 14(6): 346–354.

    Article  Google Scholar 

  28. MOHAPATRA S R, RAJAGOPAL K, SHARMA J. Direct shear tests on geosynthetic-encased granular columns [J]. Geotextiles and Geomembranes, 2016, 44: 396–405.

    Article  Google Scholar 

  29. MURUGESAN S, RAJAGOPAL K. Geosynthetic-encased stone columns: Numerical evaluation [J]. Geotextiles and Geomembranes, 2006, 24: 349–358.

    Article  Google Scholar 

  30. CHEN C F, YANG Y, XIAO S J, ZHOU Z J. Residual settlement calculation of geocell cushion over gravel piles [J]. Journal of Central South University of Technology, 2008, 15: 21–27.

    Article  Google Scholar 

  31. GHAZAVI M, NAZARIAFSHAR J. Bearing capacity of geosynthetic encased stone columns [J]. Geotextiles and Geomembranes, 2013, 38: 26–36.

    Article  Google Scholar 

  32. NAZARIAFSHAR J, GHAZAVI M. Experimental studies on bearing capacity of geosynthetic reinforced stone columns [J]. Arabian Journal for Science and Engineering, 2014, 39: 1559–1571.

    Article  Google Scholar 

  33. GONG X N, TIAN X J, HU W T. Simplified method for predicating consolidation settlement of soft ground improved by floating soil-cement column [J]. Journal of Central South University, 2015, 22: 2699–2706.

    Article  Google Scholar 

  34. IAI S. Similitude for shaking table tests on soil-structure fluid models in 1g gravitational field [J]. Soils and Foundations, 1989, 29(1): 105–118.

    Article  Google Scholar 

  35. WESTINE P, DODGE F, BAKER W. Similarity methods in engineering dynamics: Theory and Practice of Scale Modeling [M]. Elsevier, 2012.

    Google Scholar 

  36. DASH S K, BORA M C. Improved performance of soft clay foundations using stone columns and geocell-sand mattress [J]. Geotextiles and Geomembranes, 2013, 41: 26–35.

    Article  Google Scholar 

  37. HONG Y S, WU C S, YU Y S. Model tests on geotextileencased granular columns under 1-g and undrained conditions [J]. Geotextiles and Geomembranes, 2016, 44: 13–27.

    Article  Google Scholar 

  38. MEYERHOF G, SASTRY V. Bearing capacity of piles in layered soils Part 2. Sand overlying clay [J]. Canadian Geotechnical Journal, 1978, 15: 183–189.

    Article  Google Scholar 

  39. SELIG E, MCKEE K. Static and dynamic behavior of small footings [J]. Journal of the Soil Mechanics and Foundations Division, 1961, 87: 29–50.

    Google Scholar 

  40. CHUMMER A V. Bearing capacity theory from experimental results [J]. J Soil Mech Found Div, ASCE, 1972, 98(12): 1311–1324.

    Google Scholar 

  41. NAYAK N V. Recent Advances in Ground Improvements by Stone Column [C]//Proceedings of Indian Geotechnical Conference, IGC-83. Madras, India, 1983, 1: 5–19.

    Google Scholar 

  42. FATTAH M Y, SHLASH K T, AL-WAILY M J. Stress concentration ratio of model stone columns in soft clays [J]. Geotechnical Testing Journal, 2011, 34(1): 1–11.

    Google Scholar 

  43. FOX Z P. Critical state, dilatancy and particle breakage of mine waste rock [D]. Fort Collins, USA: Colorado State University, 2011.

    Google Scholar 

  44. STOEBER J N. Effects of maximum particle size and sample scaling on the mechanical behavior of mine waste rock: A critical state approach [D]. Fort Collins, USA, Colorado State University, 2012.

    Google Scholar 

  45. BAI X H, HUANG X Z, ZHANG W. Bearing capacity of square footing supported by a geobelt-reinforced crushed stone cushion on soft soil [J]. Geotextiles and Geomembranes, 2013, 38: 37–42.

    Article  Google Scholar 

  46. GUIDO V A, CHANG D K, SWEENEY M A. Comparison of geogrid and geotextile reinforced earth slabs [J]. Canadian Geotechnical Journal, 1986, 23: 435–440.

    Article  Google Scholar 

  47. OMAR M, DAS B, PURI V, YEN S. Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement [J]. Canadian Geotechnical Journal, 1993, 30: 545–549.

    Article  Google Scholar 

  48. LATHA G M, SOMWANSHI A. Bearing capacity of square footings on geosynthetic reinforced sand [J]. Geotextiles and Geomembranes, 2009, 27: 281–294.

    Article  Google Scholar 

  49. DEB K, SAMADHIYA N K, NAMDEO J B. Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay [J]. Geotextiles and Geomembranes, 2011, 29: 190–196.

    Article  Google Scholar 

  50. MOSALLANEZHAD M, HATAF N, GHAHRAMANI A. Three dimensional bearing capacity analysis of granular soil, reinforced with innovative grid-anchor system [J]. Iranian Journal of Science & Technology, Transaction B: Engineering, 2010, 34(B4): 419–431.

    Google Scholar 

  51. DAS B, KHING K. Foundation on layered soil with geogrid reinforcement—Effect of a void [J]. Geotextiles and Geomembranes, 1994, 13: 545–553.

    Article  Google Scholar 

  52. ABU-FARSAKH M, CHEN Q, SHARMA R. An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand [J]. Soils and Foundations, 2013, 53: 335–348.

    Article  Google Scholar 

  53. CHAKRABORTY M, KUMAR J. Bearing capacity of circular foundations reinforced with geogrid sheets [J]. Soils and Foundations, 2014, 54: 820–832.

    Article  Google Scholar 

  54. MURUGESAN S, RAJAGOPAL K. Studies on the behavior of single and group of geosynthetic encased stone columns [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 136: 129–139.

    Article  Google Scholar 

  55. DEB K, MOHAPATRA S R. Analysis of stone column-supported geosynthetic-reinforced embankments [J]. Applied Mathematical Modelling, 2013, 37: 2943–2960.

    Article  MathSciNet  MATH  Google Scholar 

  56. BARKSDALE R D, BACHUS R C. Design and construction of stone column volume I final report, FHWA/RD-83/026 [R]. Department of Transportation, Federal Highway Administration, US, 1983.

    Google Scholar 

  57. SHAHU J T, MADHAV M R, HAYASHI S. Analysis of soft ground-granular pile granular mat system [J]. Computers and Geotechnics, 2000, 27: 45–62.

    Article  Google Scholar 

  58. CHRISTOULAS S T, BOUCKOVALAS G, GIANNAROS C H. An experimental study on model stone columns [J]. Soils and Foundations Journal, 2000, 40(6): 11–22.

    Article  Google Scholar 

  59. ABOSHI H, ICHIMOTO E, HARADA K, EMOKI M. The composer-a method to improve the characteristics of soft clays by inclusion of large diameter sand columns [C]//Proceedings of International Conference on Soil Reinforcement. Paris, 1979: 211–216.

    Google Scholar 

  60. WONG H Y. Vibroflotation e its effect on weak cohesive soils [J]. Civil Engineering (London), 1975, 82: 44–76.

    Google Scholar 

  61. MADHAV M R, VITKAR R P. Strip footing on weak clay stabilized with a granular trench or pile [J]. Canadian Geotechnical Journal, 1975, 15(4): 605–609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Kalantary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrannia, N., Kalantary, F. & Ganjian, N. Experimental study on soil improvement with stone columns and granular blankets. J. Cent. South Univ. 25, 866–878 (2018). https://doi.org/10.1007/s11771-018-3790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3790-z

Keywords

关键词

Navigation