Skip to main content
Log in

Equivalent elastic compliance tensor for rock mass with multiple persistent joint sets: Exact derivation via modified crack tensor

  • Geological, Civil, Energy and Traffic Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior. This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint sets. A new method based on the space geometric and mechanical properties of the modified crack tensor is proposed, providing an analytical solution for the equivalent elastic compliance tensor of rock mass. A series of experiments validate the capability of the compliance tensor to accurately represent the deformation of rock mass with multiple persistent joint sets, based on conditions set by the basic hypothesis. The spatially varying rules of the equivalent elastic parameters of rock mass with a single joint set are analyzed to reveal the universal law of the stratified rock mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRADY B H. Rock mechanics for underground mining [M]. New York: Springer, 2004.

    Google Scholar 

  2. PRIEST S D. Discontinuity analysis for rock engineering [M]. New York: Springer, 1993.

    Book  Google Scholar 

  3. MÜLLER L. Address to the opening session[C]//Proc 1st Congr, Int. Soc. Rock Mech, 1967: 80–83.

    Google Scholar 

  4. BROWN E T. Fifty years of the ISRM and associated progress in rock mechanics[C]// QIAN Q, ZHOU X Y, ed. Proc 12th ISRM Cong on ‘Rock Mechanics’. Beijing, China: International Society for Rock Mechanics, 2011: 29–45.

    Google Scholar 

  5. EINSTEIN H H, VENEZIANO D, BAECHER G B, OREILLY K J. The effect of discontinuity persistence on rock slope stability [J]// International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Pergamon, 1983, 20(5): 227–236.

    Article  Google Scholar 

  6. CUNDALL P A. A computer model for simulating progressive, large scale movements in blocky rock systems Proceedings of the international symposium on rock fractures[C]. International Society for Rock Mechanics, 1971: 1–12.

    Google Scholar 

  7. CUNDALL P A. Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1988, 25(3): 107–116.

    Article  Google Scholar 

  8. LEMOS J V, HART R D, CUNDALL P A. A generalized distinct element program for modelling jointed rock mass[C]//International Symposium on Fundamentals of Rock Joints. Bjokliden:[Lulea Tekniska Universitet]. 1985: 335–343.

    Google Scholar 

  9. HART R, CUNDALL P A, LEMOS J. Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1988, 25(3): 117–125.

    Article  Google Scholar 

  10. CUNDALL P A. Distinct element models of rock and soil structure[J]. Analytical and Computational Methods in Engineering Rock Mechanics, 1987, 4: 129–163.

    Google Scholar 

  11. SHI G H. Discontinuous deformation analysis: A new numerical model for the statics and dynamics of deformable block structures[J]. Engineering Computations, 1992, 9(2): 157–168.

    Article  Google Scholar 

  12. JING L. Formulation of discontinuous deformation analysis (DDA)—An implicit discrete element model for block systems[J]. Engineering Geology, 1998, 49(3): 371–381.

    Article  Google Scholar 

  13. MIN K B, JING L. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(6): 795–816.

    Article  Google Scholar 

  14. ESPOSITO C, MARTINO S, MUGNOZZA G S. Mountain slope deformations along thrust fronts in jointed limestone: An equivalent continuum modelling approach[J]. Geomorphology, 2007, 90(1): 55–72.

    Article  Google Scholar 

  15. AYDAN Ö, JEONG G C, SEIKI T, AKAGI T. A comparative study on various approaches to model discontinuous rock mass as equivalent continuum [C]// The 2nd Int Conf on Mechanics of Jointed and Fractured Rock. Vienna: ICMJFR, 1995: 569–574.

    Google Scholar 

  16. MIN K B. Fractured rock masses as equivalent continua-A Numerical Study[D]. Stockholm: Royal Institute of Technology (KTH), 2004.

    Google Scholar 

  17. YANG J P, CHEN W Z, DAI Y H, YU H D. Numerical determination of elastic compliance tensor of fractured rock masses by finite element modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 474–482.

    Article  Google Scholar 

  18. BIENIAWSKI Z T. Determining rock mass deformability: experience from case histories[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1978, 15(5): 237–247.

    Article  Google Scholar 

  19. PALMSTRÖM A, SINGH R. The deformation modulus of rock masses—Comparisons between in situ tests and indirect estimates[J]. Tunnelling and Underground Space Technology, 2001, 16(2): 115–131.

    Article  Google Scholar 

  20. HOEK E, DIEDERICHS M S. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(2): 203–215.

    Article  Google Scholar 

  21. CAI M, KAISER P K, UNO H. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 3–19.

    Article  Google Scholar 

  22. SONMEZ H, GOKCEOGLU C, ULUSAY R. Indirect determination of the modulus of deformation of rock masses based on the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 849–857.

    Article  Google Scholar 

  23. BARTON N. Some new Q-value correlations to assist in site characterisation and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 185–216.

    Article  MathSciNet  Google Scholar 

  24. GENIS M, BASARIR H, OZARSLAN A, BILIR E, BALABAN E. Engineering geological appraisal of the rock masses and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey[J]. Engineering Geology, 2007, 92(1): 14–26.

    Article  Google Scholar 

  25. BIENIAWSKI Z T. Tunnel design by rock mass classifications[D]. Pennsylvania: Pennsylvania State Univ University Park Dept of Mineral Engineering, 1990.

    Google Scholar 

  26. CARRANZA-TORRES C, FAIRHURST C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2): 187–213.

    Article  Google Scholar 

  27. BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics, 1974, 6(4): 189–236.

    Article  Google Scholar 

  28. HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186.

    Article  Google Scholar 

  29. BIDGOLI M N, ZHAO Z, JING L. Numerical evaluation of strength and deformability of fractured rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(6): 419–430.

    Article  Google Scholar 

  30. GERRARD C M. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1982, 19(1): 9–14.

    Article  Google Scholar 

  31. SALAMON M D G. Elastic moduli of a stratified rock mass[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1968, 5(6): 519–527.

    Article  Google Scholar 

  32. SINGH B. Continuum characterization of jointed rock masses: Part I—The constitutive equations[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1973, 10(4): 311–335.

    Article  Google Scholar 

  33. FOSSUM A F. Effective elastic properties for a randomly jointed rock mass[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1985, 22(6): 467–470.

    Article  Google Scholar 

  34. AMADEI B. Importance of anisotropy when estimating and measuring in situ stresses in rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1996, 33(3): 293–325.

    Article  Google Scholar 

  35. GERRARD C M. Elastic models of rock masses having one, two and three sets of joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1982, 19(1): 15–23.

    Article  Google Scholar 

  36. JIANG Q, FENG X T, HATZOR Y H, HAO X J, LI S J. Mechanical anisotropy of columnar jointed basalts: An example from the Baihetan hydropower station, China[J]. Engineering Geology, 2014, 175: 35–45.

    Article  Google Scholar 

  37. ODA M. Fabric tensor for discontinuous geological materials[J]. Soils and Foundations, 1982, 22(4): 96–108.

    Article  Google Scholar 

  38. ODA M. Similarity rule of crack geometry in statistically homogeneous rock masses[J]. Mechanics of Materials, 1984, 3(2): 119–129.

    Article  Google Scholar 

  39. ODA M. A stereological study on crack geometry of discontinuous rock masses[C]//Proceedings of the First International Symposian for Science on Form. Tokyo: KTK Scientific Publisher, 1986: 183–189.

    Google Scholar 

  40. ODA M. A method for evaluating the effect of crack geometry on the mechanical behavior of cracked rock masses[J]. Mechanics of Materials, 1983, 2(2): 163–171.

    Article  Google Scholar 

  41. ODA M, SUZUKI K, MAESHIBU T. Elastic compliance for rock-like materials with random cracks[J]. Soils and Foundations, 1984, 24(3): 27–40.

    Article  Google Scholar 

  42. ODA M, YAMABE T, ISHIZUKA Y, KUMASAKA H, TADA H, KIMURA K. Elastic stress and strain in jointed rock masses by means of crack tensor analysis[J]. Rock Mechanics and Rock Engineering, 1993, 26(2): 89–112.

    Article  Google Scholar 

  43. ODA M, KATSUBE T, TAKEMURA T. Microcrack evolution and brittle failure of Inada granite in triaxial compression tests at 140 MPa[J]. Journal of Geophysical Research: Solid Earth (1978–2012), 2002, 107(B10): ECV 9-1-ECV 9-17.

    Google Scholar 

  44. GUVANASEN V, CHAN T. Upscaling the thermohydromechanical properties of a fractured rock mass using a modified crack tensor theory[J]. Elsevier Geo-Engineering Book Series, 2004, 2: 251–256.

    Article  Google Scholar 

  45. GAO Z, ZHAO J, YAO Y. A generalized anisotropic failure criterion for geomaterials[J]. International Journal of Solids and Structures, 2010, 47(22): 3166–3185.

    Article  MATH  Google Scholar 

  46. PIETRUSZCZAK S, LYDZBA D, SHAO J F. Modelling of inherent anisotropy in sedimentary rocks[J]. International Journal of Solids and Structures, 2002, 39(3): 637–648.

    Article  MATH  Google Scholar 

  47. PIETRUSZCZAK S, MROZ Z. On failure criteria for anisotropic cohesive-frictional materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(5): 509–524.

    Article  MATH  Google Scholar 

  48. JAEGER J C, COOK N G W, ZIMMERMAN R. Fundamentals of rock mechanics[M]. John Wiley & Sons, 2009.

    Google Scholar 

  49. AMADEI B, GOODMAN R E. A 3-D constitutive relation for fractured rock masses[C]//Proceedings of the International Symposium on the Mechanical Behavior of Structured Media. Part B, Amsterdam: Elsevier, 1981: 249–268.

    Google Scholar 

  50. NOORIAN BIDGOLI M, JING L. Anisotropy of strength and deformability of fractured rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 156–164.

    Article  Google Scholar 

  51. CHO J W, KIM H, JEON S, MIN K B. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158–169.

    Article  Google Scholar 

  52. WU Q, KULATILAKE P. REV and its properties on fracture system and mechanical properties, and an orthotropic constitutive model for a jointed rock mass in a dam site in China[J]. Computers and Geotechnics, 2012, 43: 124–142.

    Article  Google Scholar 

  53. CHENG D X, PAN W, LIU D A, FEN S R, GUO H F, DING E B. 3DEC modeling of equivalent mechanical parameters in anchored jointed rock mass[J]. Rock and Soil Mechanics, 2006, 27(12): 2127–2132.

    Google Scholar 

  54. DI S J, XU W Y, NING Y, WANG W, WU G Y. Macro-mechanical properties of columnar jointed basaltic rock masses[J]. Journal of Central South University of Technology, 2011, 18: 2143–2149.

    Article  Google Scholar 

  55. LEKHNITSKIĬ S G. Theory of elasticity of an anisotropic elastic body[M]. New York: Holden-Day, 1963.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Jiang  (江权).

Additional information

Foundation item: Projects(41172284, 51379202) supported by the National Natural Science Foundation of China; Project(2013CB036405) supported by the National Basic Research Program of China; Project(2013BAB02B01) supported by the National Key Technologies R&D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Jiang, Q., Feng, Xt. et al. Equivalent elastic compliance tensor for rock mass with multiple persistent joint sets: Exact derivation via modified crack tensor. J. Cent. South Univ. 23, 1486–1507 (2016). https://doi.org/10.1007/s11771-016-3201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3201-2

Keywords

Navigation