Skip to main content
Log in

Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effect of dolomite with different particle size fractions on hematite flotation was studied using sodium oleate as collector at pH of about 9. The effect mechanism of dolomite on hematite flotation was investigated by means of solution chemistry, ultraviolet spectrophotometry (UV), inductively coupled plasma atomic emission spectrometry (ICP-AES) and X-ray photoelectron spectroscopy (XPS). It is observed that dolomite with different size fractions has depressing effect on hematite flotation using sodium oleate as collector, and dolomite could be the “mineral depressant” of hematite using sodium oleate as collector. The reasons for that are concerned with sodium oleate consumption and the adsorption onto hematite of dissolved species of dolomite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ARAUJO A C, VIANA P R M, PERES A E C. Reagents in iron ores flotation [J]. Minerals Engineering, 2005, 18(2): 219–224.

    Article  Google Scholar 

  2. MOWLA D, KARIMI G, OSTADNEZHAD K. Removal of hematite from silica sand ore by reverse flotation technique [J]. Separation and Purification Technology, 2008, 58(3): 419–423.

    Article  Google Scholar 

  3. LIMA N P, VALADÃO G E S, PERES A E C. Effect of amine and starch dosage on the reverse cationic flotation of an iron ore [J]. Minerals Engineering, 2013, 45: 180–184.

    Article  Google Scholar 

  4. FILIPPOV L O, SEVEROV V V, FILIPPOVA I V. An overview of the beneficiation of iron ores via reverse cationic flotation [J]. International Journal of Mineral Processing, 2014, 127: 62–69.

    Article  Google Scholar 

  5. MA M. Froth flotation of iron ores [J]. Int J Min Eng Miner Process, 2012, 1(2): 56–61.

    Article  Google Scholar 

  6. MA X, MARQUES M, GONTIJO C. Comparative studies of reverse cationic/anionic flotation of Vale iron ore [J]. International Journal of Mineral Processing, 2011, 100(1/2): 179–183.

    Article  Google Scholar 

  7. MONTES-SOTOMAYOR S, HOVOT R, KONGOLO M. Technical notes. Flotation of silicate gangue iron ores: mechanism and effect of starch [J]. Minerals Engineering, 1998, 11: 71–76.

    Article  Google Scholar 

  8. QUAST K. Flotation of hematite using C6-C18 saturated fatty acid [J]. Minerals Engineering, 2006, 19(6/7/8): 582–597.

    Article  Google Scholar 

  9. ZHANG Zhao-yuan, LV Zheng-fu, YIN Wan-zhong, HAN Yue-xin. Influence of the siderite in donganshan iron ore on reverse flotation [J]. Metal Mine, 2008(10): 52–55. (in Chinese)

    Google Scholar 

  10. YANG Bin. Study on separation technology and mechanism of siderite and hematite [D]. Changsha: Central South University, 2010. (in Chinese)

    Google Scholar 

  11. LUO Xi-mei, YIN Wan-zhong, YAO Jin, SUN Chuan-yao, CAO Yang, MA Ying-qiang, HOU Ying. Flotation separation of magnetic separation concentrate of refractory hematite containing carbonate with enhanced dispersion [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(1): 238–245. (in Chinese)

    Google Scholar 

  12. CAPPELLEN P, CHARLET L, STUMM W, WERSIN P. A surface complexation model of the carbonate mineral-aqueous solution interface [J]. Geochim Cosmochim Acta, 1993, 57(15): 3505–3518.

    Article  Google Scholar 

  13. CHEN Gong-lun, TAO D. Effect of solution chemistry on flotability of magnesite and dolomite [J]. International Journal of Mineral Processing, 2004, 74(1/2/3/4): 343–357.

    Article  Google Scholar 

  14. NUNES A P L, PERES A E C, ARAUJO A C, VALADÃO G E S. Electrokinetic properties of wavellite and its floatability with cationic and anionic collector [J]. Journal of Colloid and Interface Science, 2011, 361(2): 632–638.

    Article  Google Scholar 

  15. VUCINIC D R, RADULOVIC D S, DEUŠIC S D. Electrokinetic properties of hydroxyapatite under flotation conditions [J]. Journal of Colloid and Interface Science, 2010, 343(1): 239–245.

    Article  Google Scholar 

  16. HU Yue-hua. Research on solution chemistry and floatability of salt-type minerals [D]. Changsha: Central South University, 1989. (in Chinese)

    Google Scholar 

  17. HU Y, CHI R, XU Z. Solution chemistry study of salt-type mineral flotation systems: Role of inorganic dispersants [J]. Industrial and Engineering Chemistry Research, 2003, 42(8): 1641–1647.

    Article  Google Scholar 

  18. POKROVSKY O S, GOLUBEV S V, SCHOTT J, CASTILLO A. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumnetral pH, 25 to 150? and 55 atm pCO2: New constrains on CO2 sequestration in sedimentary basins [J]. Chemical Geology, 2009, 260(3/4): 317–329.

    Google Scholar 

  19. NERMIN G, NURGUL O. pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions [J]. Applied Surface Science, 2005, 252(23): 8057–8061.

    Google Scholar 

  20. POKROVSKY O S, GOLUBEV S V, SCHOTT J, CASTILLO A. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumnetral pH, 25 to 150 °C and 1 to 55 atm pCO2: New constrains on CO2 sequestration in sedimentary basins [J]. Chemical Geology, 2009, 265(1/2): 20–32.

    Article  Google Scholar 

  21. JIANG Hao, LIU Guo-rong, HU Yue-hua, XU Long-hua, YU Ya-wen, XIE Zhen, CHEN Hao-chuan. Flotation and adsorption of quaternary ammonium salts collectors on kaolinite of different particle size [J]. International Journal of Mining Science and Technology, 2013, 23(2): 249–253.

    Article  Google Scholar 

  22. VIEIRA A M, PERES A E C. The effect of amine type, pH and size range in the flotation of quartz [J]. Minerals Engineering, 2007, 20(10): 1008–1013.

    Article  Google Scholar 

  23. NERMIN G, NURGUL O. pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions [J]. Applied Surface Science, 2006, 252(23): 8057–8061.

    Article  Google Scholar 

  24. GAUTELIER M, SCHOTT J, OELKERS E H. An experimental study of dolomite dissolution rates at 80 °C as a function of chemical affinity and solution composition [J]. Chemical Geology, 2007, 242(3/4): 509–517.

    Article  Google Scholar 

  25. LIU A, NI W, WU W. Mechanism of separating pyrite and dolomite by flotation [J]. Journal of University of Science and Technology Beijing: Mineral, Metallurgy, Material, 2007, 14(4): 291–296.

    Article  Google Scholar 

  26. FENG Yin. Study on direct flotation separation between apatite and dolomite [D]. Changsha: Central South University, 2011. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-zhong Yin  (印万忠).

Additional information

Foundation item: Project(51374079) supported by the National Natural Science Foundation of China; Project(KKSY201521031) supported by Talent Cultivation Foundation of Kunming University of Science and Technology, China; Project(2015Y067) supported by Foundation of Yunnan Educational Committee, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Xm., Yin, Wz., Wang, Yf. et al. Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector. J. Cent. South Univ. 23, 529–534 (2016). https://doi.org/10.1007/s11771-016-3099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3099-8

Keywords

Navigation