Skip to main content
Log in

Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Single cell temperature difference of lithium-ion battery (LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics (CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OMAR N, DAOWD M, BOSSCHE P V D, HEGAZY O, SMEKENS J, COOSEMANS T. Rechargeable energy storage systems for plug-in hybrid electric vehicles—Assessment of electrical characteristics [J]. Energies, 2012, 5(8): 2952–2988.

    Article  Google Scholar 

  2. LINDEN D, REDDY T B. Handbook of batteries [M]. New York: McGraw-Hill Professional, 2002: 358–359.

    Google Scholar 

  3. KIZILEL R, LATEEF A, SABBAH R, FAIRO M, SELMAN J, AL-HALLAJ S. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature [J]. Journal of Power Sources, 2008, 183(1): 370–375.

    Article  Google Scholar 

  4. CHACKO S, CHUNG Y M. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles [J]. Journal of Power Sources, 2012, 213: 255–263.

    Article  Google Scholar 

  5. PESARAN A A. Battery thermal models for hybrid vehicle simulations [J]. Journal of Power Sources, 2002, 110(2): 377–382.

    Article  Google Scholar 

  6. AL HALLAJ S, MALEKI H, HONG J, SELMAN J R. Thermal modeling and design considerations of lithium-ion batteries [J]. Journal of Power Sources, 1999, 83(1): 1–8.

    Article  Google Scholar 

  7. SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of Power Sources, 2001, 99(1): 70–77.

    Article  Google Scholar 

  8. BROWN D, LANDERS R G. Control oriented thermal modeling of lithium ion batteries from a first principle model via model reduction by the global Arnoldi algorithm [J]. Journal of the Electrochemical Society, 2012, 159(12): A2043–A2052.

    Article  Google Scholar 

  9. AL-HALLAJ S, SELMAN J. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications [J]. Journal of Power Sources, 2002, 110(2): 341–348.

    Article  Google Scholar 

  10. NELSON P, DEES D, AMINE K, HENRIKSEN G. Modeling thermal management of lithium-ion PNGV batteries [J]. Journal of Power Sources, 2002, 110(2): 349–356.

    Article  Google Scholar 

  11. SRINIVASAN V, WANG C. Analysis of electrochemical and thermal behavior of Li-ion cells [J]. Journal of the Electrochemical Society, 2003, 150(1): A98–A106.

    Article  Google Scholar 

  12. SRINIVASAN V, NEWMAN J. Design and optimization of a natural graphite/iron phosphate lithium-ion cell [J]. Journal of the Electrochemical Society, 2004, 151(10): A1530–A1538.

    Article  Google Scholar 

  13. VERBRUGGE M, KOCH B. Generalized recursive algorithm for adaptive multiparameter regression application to lead acid, nickel metal hydride, and lithium-ion batteries [J]. Journal of the Electrochemical Society, 2006, 153(1): A187–A201.

    Article  Google Scholar 

  14. SMITH K A, RAHN C D, WANG C Y. Control oriented 1D electrochemical model of lithium ion battery [J]. Energy Conversion and Management, 2007, 48(9): 2565–2578.

    Article  Google Scholar 

  15. DEES D, GUNEN E, ABRAHAM D, ANDEW J, JAI P. Electrochemical modeling of lithium-ion positive electrodes during hybrid pulse power characterization tests [J]. Journal of the Electrochemical Society, 2008, 155(8): A603–A613.

    Article  Google Scholar 

  16. KIM G H, SMITH K, LEE K J, SHRIRAM S, AHMAD P. Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales [J]. Journal of the Electrochemical Society, 2011, 158(8): A955–A969.

    Article  Google Scholar 

  17. SMITH K, WANG C Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J]. Journal of Power Sources, 2006, 160(1): 662–673.

    Article  Google Scholar 

  18. FAN L, KHODADADI J, PESARAN A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles [J]. Journal of Power Sources, 2013, 238(15): 301–312.

    Article  Google Scholar 

  19. MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity [J]. Journal of Power Sources, 2011, 196(13): 5685–5696.

    Article  Google Scholar 

  20. SABBAH R, KIZILEL R, SELMAN J, AL-HALLAJ S. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution [J]. Journal of Power Sources, 2008, 182(2): 630–638.

    Google Scholar 

  21. JAURA A K, PARK C W. Battery system for automotive vehicle [P]. US Patent 7172831B2, 2007.

    Google Scholar 

  22. LIU J, AKAY HU, ECER A, PAYLI R U. Flows around moving bodies using a dynamic unstructured overset-grid method [J]. International Journal of Computational Fluid Dynamics, 2010, 24(6): 187–200.

    Article  MATH  Google Scholar 

  23. BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems [J]. Journal of the Electrochemical Society, 1985, 132(1): 5–12.

    Article  Google Scholar 

  24. INUI Y, KOBAYASHI Y, WATANABE Y, WATASE Y, KITAMURA Y. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries [J]. Energy Conversion and Management, 2007, 48(7): 2103–2109.

    Article  Google Scholar 

  25. LEUNG D, GUO Y. Transesterification of neat and used frying oil: optimization for biodiesel production [J]. Fuel Process Technol, 2006, 87(10): 883–890.

    Article  Google Scholar 

  26. WU X, LEUNG D Y. Optimization of biodiesel production from camelina oil using orthogonal experiment [J]. Applied Energy, 2011, 88(11): 3615–3624.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liang  (梁波).

Additional information

Foundation item: Project(50803008) supported by the National Natural Science Foundation of China; Projects(14JJ4035, 2011RS4067) supported by the Natural Science Foundation of Hunan Province, China; Project(2013-sdllmd-08) supported by the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology), China; Projects(20100480946, 201104508) supported by the China Postdoctoral Science Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yp., Ouyang, Cz., Jiang, Qb. et al. Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow. J. Cent. South Univ. 22, 3970–3976 (2015). https://doi.org/10.1007/s11771-015-2941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2941-8

Keywords

Navigation