Skip to main content
Log in

Improved Goldstein filter for InSAR noise reduction based on local SNR

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is not always sufficient in the reduction of phase noise. In this work, the local SNR-based Goldstein filter is further developed with the improvements in the definition of the local SNR and the adaption of the filtering patch size. What’s more, for preventing the loss of the phase signal caused by the excessive filtering, an iteration filtering operation is also introduced in this new algorithm. To evaluate the performance of the proposed algorithm, both a simulated digital elevation model (DEM) interferogram and real SAR deformation interferogram spanning the L’ Aquila earthquake are carried out. The quantitative results from the simulated and real data reveal that up to 79.5% noises can be reduced by the new filter, indicating 9%–32% improvements over the previous local SNR-based Goldstein filter. This demonstrates that the new filter is not only equipped with sufficient adaption, but also can suppress the phase noise without the sacrifice of the phase signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MADSEN S N, ZEBKER H A, MARTIN J. Topographic mapping using radar interferometry: Processing techniques [J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1):246–256.

    Article  Google Scholar 

  2. MASSONNET D, ROSSI M, CARMONA C, ADRAGNA F, PELTZER G, FEIGL K L, RABAUTE, T. The displacement field of the Landers earthquake mapped by radar interferometry [J]. Nature, 1993, 364:138–142.

    Article  Google Scholar 

  3. WANG Yong-zhe, ZHU Jian-jun, OU Zi-qiang, LI Zhi-wei, XING Xue-min. Coseismic slip distribution of 2009 L’Aquila earthquake derived from InSAR and GPS data [J]. Journal of Central South University, 2012, 19:244–251.

    Article  Google Scholar 

  4. HU Jun, LI Zhi-wei, DING Xiao-li, ZHU Jian-jun, ZHANG Lei, SUN Qian. 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from Multi-Aperture InSAR and D-InSAR measurements [J]. Journal of Geodesy, 2012, 86: 1026–1041

    Article  Google Scholar 

  5. SUN Qian, LI Zhi-wei, DING Xiao-li, ZHU Jian-jun, HU Jun. Multi-Temporal InSAR data fusion for investigating mining subsidence [C]// Proc of the 2011 International Symposium on Image and Data Fusion. Tengchong, China, 2011:1–4.

    Chapter  Google Scholar 

  6. HAY-MAN NG A, GE Lin-lin, ZHANG Kui, LI Xiao-jing. Estimating horizontal and vertical movements due to underground mining using ALOS PALSAR [J]. Engineering Geology, 2012, 143/144:18–27.

    Article  Google Scholar 

  7. CHEN Qiang, LIU Guo-xiang, DING Xiao-li, HU Jyr-ching, YUAN Ling-guo, ZHONG Ping, OMURA M. Tight integration of GPS observations and persistent scatterer InSAR for detecting vertical ground motion in Hong Kong [J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(6):477–486.

    Article  Google Scholar 

  8. ZAGAS T, TSITSONI T, GANATSAS P, TSAKALDIMI M, SKOTIDAKIS T, ZAGAS D. Land reclamation and ecological restoration in a marine area [J]. International Journal of Environmental Research, 2010, 4(4):673–680.

    Google Scholar 

  9. GOLDSTEIN R M, ENGELHARDT H, KAMB B, FROLICH R M. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream [J]. Science, 1993, 262:1525–1530.

    Article  Google Scholar 

  10. KUMAR V, VENKATARAMANA G, HOGDA K A. Glacier surface velocity estimation using SAR interferometry technique applying ascending and descending passes in Himalayas [J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4):545–551.

    Article  Google Scholar 

  11. GOURMELEN N, KIM S W, SHEPHERD A, PARK J W, SUNDAL A V, BJORNSSON H, PALSSON F. Ice velocity determined using conventional and multiple-aperture InSAR [J]. Earth and Planetary Science Letters, 2011, 307(1/2):156–160.

    Article  Google Scholar 

  12. PRATI C, FERRETTI A, PERISSIN D. Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations [J]. Journal of Geodynamics, 2010, 49(3/4):161–170.

    Article  Google Scholar 

  13. GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite radar interferometry: Two dimensional phase unwrapping [J]. Radio Science, 1988, 23:713–720.

    Article  Google Scholar 

  14. SHANKER A P, ZEBKER H. Edgelist phase unwrapping algorithm for time series InSAR analysis [J]. Journal of the Optical Society of America. A, 2010, 27(3):605–612.

    Article  Google Scholar 

  15. ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30:950–959.

    Article  Google Scholar 

  16. MARTINEZ-ESPLA J J, MARTINES-MARIN T, LOPEZ-SANCHEZ J M. Introduction of a grid-based filter to solve InSAR phase unwrapping [C]// Proceedings of IGARSS 2007. Barcelona, Spain, 2007:4497–4500.

    Google Scholar 

  17. LOFFELD O, NIES H, KNEDLIK S, YU W. Phase unwrapping for SAR interferometry—A data fusion approach by Kalman filtering [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):47–58.

    Article  Google Scholar 

  18. ZOU Wei-bao, LI Yan, LI Zhi-lin, DING Xiao-li. Improvement of the accuracy of InSAR image co-registration based on tie points—A review [J]. Sensors, 2009, 9(2):1259–1281.

    Article  Google Scholar 

  19. LI Dong, ZHANG Yuan-hua. A fast offset estimation approach for InSAR image subpixel registration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 9(2):267–271.

    MATH  Google Scholar 

  20. BEZERRA-CANDEIAS A L, MURA J C, DUTRA L, MOREIRA J R. Interferogram phase noise reduction using morphological and modified median filters [C]// Proceedings of IGARSS’95. Firenze, Italy, 1995:166–168.

    Google Scholar 

  21. GOLDSTEIN R M, WERNER C L. Radar interferogram filtering for geophysical applications [J]. Geophysical Research Letters, 1998, 25(21):4035–4038.

    Article  Google Scholar 

  22. BARAN I, STEWART M P, KAMPES B M, PERSKI Z, LILLY P. A modification to the Goldstein radar interferogram filter [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9):2114–2118.

    Article  Google Scholar 

  23. LI Zhi-wei, DING Xiao-li, ZHENG Da-wei, HUANG Cheng. Least squares-based filter for remote sensing image noise reduction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2044–2049.

    Article  Google Scholar 

  24. LI Zhi-wei, DING Xiao-li, HUANG Cheng, ZHU Jian-jun, CHEN Yan-lin. Improved filtering parameter determination for the Goldstein radar interferogram filter [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(6):621–634.

    Article  Google Scholar 

  25. SUN Qian, ZHU Jian-jun, LI Zhi-wei, YIN Hong-jie, HU Bo, JIANG Mi. A new adaptive InSAR interferogram filter based on SNR [J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5):437–442. (in chinese)

    Google Scholar 

  26. BAMLER R, HARTL P. Synthetic aperture radar interferometry [J]. Inverse Problem, 1998, 14(4):R1–R54.

    Article  MathSciNet  MATH  Google Scholar 

  27. ZOU Mou-yan. Deconvolution and signal recovery [M]. Beijing: Defense Industry Press, 2001. (in Chinese)

    Google Scholar 

  28. LI Zhi-wei, DING Xiao-li, HUANG Cheng, ZOU Wei-bao, SHEA Y K. Filtering method for SAR interferograms with strong noise [J]. International Journal of Remote Sensing, 2006, 27(14):2991–3000.

    Article  Google Scholar 

  29. LI Zhi-lin, ZOU Wei-bao, DING Xiao-li, Chen Yong-qi, Liu Guo-xiang. A quantitative measure for the quality of InSAR interferograms based on phase differences [J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(10):1131–1137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-wei Li  (李志伟).

Additional information

Foundation item: Projects(40974006, 40774003) supported by the National Natural Science Foundation of China; Project(NCET-08-0570) supported by the Program for New Century Excellent Talents in Universities of China; Project(2011JQ001) supported by the Fundamental Research Funds for the Central Universities of China; Project(PolyU 5155/07E) supported by the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China; Project(CX2011B102) supported by the Doctoral Research Innovation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Li, Zw., Zhu, Jj. et al. Improved Goldstein filter for InSAR noise reduction based on local SNR. J. Cent. South Univ. 20, 1896–1903 (2013). https://doi.org/10.1007/s11771-013-1688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1688-3

Key words

Navigation